In the class of Sobolev vector fields in Rn of bounded divergence, for which the theory of DiPerna and Lions provides a well defined notion of flow, we characterize the vector fields whose flow commutes in terms of the Lie bracket and of a regularity condition on the flows themselves. This extends a classical result of Frobenius in the smooth setting.

On the commutativity of flows of rough vector fields

Tione R.
2022-01-01

Abstract

In the class of Sobolev vector fields in Rn of bounded divergence, for which the theory of DiPerna and Lions provides a well defined notion of flow, we characterize the vector fields whose flow commutes in terms of the Lie bracket and of a regularity condition on the flows themselves. This extends a classical result of Frobenius in the smooth setting.
2022
159
294
312
Commutativity; Lie bracket; Nonsmooth setting; Regular Lagrangian flows
Colombo M.; Tione R.
File in questo prodotto:
File Dimensione Formato  
JMPA_ColomboTione.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 398.11 kB
Formato Adobe PDF
398.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2020011
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact