In this paper, we study the rank-one convex hull of a differential inclusion associated to entropy solutions of a hyperbolic system of conservation laws. This was introduced in [B. Kirchheim, S. Müller and V. Šverák, Studying Nonlinear PDE by Geometry in Matrix Space (Springer, 2003), Sec. 7], and many of its properties have already been shown in [A. Lorent and G. Peng, Null Lagrangian measures in subspaces, compensated compactness and conservation laws, Arch. Ration. Mech. Anal. 234(2) (2019) 857-910; A. Lorent and G. Peng, On the Rank-1 convex hull of a set arising from a hyperbolic system of Lagrangian elasticity, Calc. Var. Partial Differential Equations 59(5) (2020) 156]. In particular, in [A. Lorent and G. Peng, On the Rank-1 convex hull of a set arising from a hyperbolic system of Lagrangian elasticity, Calc. Var. Partial Differential Equations 59(5) (2020) 156], it is shown that the differential inclusion does not contain any T4 configurations. Here, we continue that study by showing that the differential inclusion does not contain T5 configurations.

T 5 configurations and hyperbolic systems

Tione R.
2024-01-01

Abstract

In this paper, we study the rank-one convex hull of a differential inclusion associated to entropy solutions of a hyperbolic system of conservation laws. This was introduced in [B. Kirchheim, S. Müller and V. Šverák, Studying Nonlinear PDE by Geometry in Matrix Space (Springer, 2003), Sec. 7], and many of its properties have already been shown in [A. Lorent and G. Peng, Null Lagrangian measures in subspaces, compensated compactness and conservation laws, Arch. Ration. Mech. Anal. 234(2) (2019) 857-910; A. Lorent and G. Peng, On the Rank-1 convex hull of a set arising from a hyperbolic system of Lagrangian elasticity, Calc. Var. Partial Differential Equations 59(5) (2020) 156]. In particular, in [A. Lorent and G. Peng, On the Rank-1 convex hull of a set arising from a hyperbolic system of Lagrangian elasticity, Calc. Var. Partial Differential Equations 59(5) (2020) 156], it is shown that the differential inclusion does not contain any T4 configurations. Here, we continue that study by showing that the differential inclusion does not contain T5 configurations.
2024
26
3
?
?
compactness; Conservation laws; convex integration; differential inclusions; hyperbolic systems
Johansson C.J.P.; Tione R.
File in questo prodotto:
File Dimensione Formato  
CCM_JohanssonTione.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 306.23 kB
Formato Adobe PDF
306.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2020032
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact