In this paper, we study the rank-one convex hull of a differential inclusion associated to entropy solutions of a hyperbolic system of conservation laws. This was introduced in [B. Kirchheim, S. Müller and V. Šverák, Studying Nonlinear PDE by Geometry in Matrix Space (Springer, 2003), Sec. 7], and many of its properties have already been shown in [A. Lorent and G. Peng, Null Lagrangian measures in subspaces, compensated compactness and conservation laws, Arch. Ration. Mech. Anal. 234(2) (2019) 857-910; A. Lorent and G. Peng, On the Rank-1 convex hull of a set arising from a hyperbolic system of Lagrangian elasticity, Calc. Var. Partial Differential Equations 59(5) (2020) 156]. In particular, in [A. Lorent and G. Peng, On the Rank-1 convex hull of a set arising from a hyperbolic system of Lagrangian elasticity, Calc. Var. Partial Differential Equations 59(5) (2020) 156], it is shown that the differential inclusion does not contain any T4 configurations. Here, we continue that study by showing that the differential inclusion does not contain T5 configurations.
T 5 configurations and hyperbolic systems
Tione R.
2024-01-01
Abstract
In this paper, we study the rank-one convex hull of a differential inclusion associated to entropy solutions of a hyperbolic system of conservation laws. This was introduced in [B. Kirchheim, S. Müller and V. Šverák, Studying Nonlinear PDE by Geometry in Matrix Space (Springer, 2003), Sec. 7], and many of its properties have already been shown in [A. Lorent and G. Peng, Null Lagrangian measures in subspaces, compensated compactness and conservation laws, Arch. Ration. Mech. Anal. 234(2) (2019) 857-910; A. Lorent and G. Peng, On the Rank-1 convex hull of a set arising from a hyperbolic system of Lagrangian elasticity, Calc. Var. Partial Differential Equations 59(5) (2020) 156]. In particular, in [A. Lorent and G. Peng, On the Rank-1 convex hull of a set arising from a hyperbolic system of Lagrangian elasticity, Calc. Var. Partial Differential Equations 59(5) (2020) 156], it is shown that the differential inclusion does not contain any T4 configurations. Here, we continue that study by showing that the differential inclusion does not contain T5 configurations.File | Dimensione | Formato | |
---|---|---|---|
CCM_JohanssonTione.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
306.23 kB
Formato
Adobe PDF
|
306.23 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.