The measurement of Z boson production is presented as a method to determine the integrated luminosity of CMS data sets. The analysis uses proton-proton collision data, recorded by the CMS experiment at the CERN LHC in 2017 at a center-of-mass energy of 13 TeV. Events with Z bosons decaying into a pair ofmuons are selected. The total number of Z bosons produced in a fiducial volume is determined, together with the identification efficiencies and correlations from the same data set, in small intervals of 20 pb(-1) of integrated luminosity, thus facilitating the efficiency and rate measurement as a function of time and instantaneous luminosity. Using the ratio of the efficiency-corrected numbers of Z bosons, the precisely measured integrated luminosity of one data set is used to determine the luminosity of another. For the first time, a full quantitative uncertainty analysis of the use of Z bosons for the integrated luminosity measurement is performed. The uncertainty in the extrapolation between two data sets, recorded in 2017 at low and high instantaneous luminosity, is less than 0.5%. We show that the Z boson rate measurement constitutes a precise method, complementary to traditional methods, with the potential to improve the measurement of the integrated luminosity.
Luminosity determination using Z boson production at the CMS experiment
Cappati, A.;Meridiani, P.;Amapane, N.;Argiro, S.;Bellan, R.;Bellora, A.;Costa, M.;Covarelli, R.;Grippo, M.;Kiani, B.;Luongo, F.;Mecca, A.;Migliore, E.;Mulargia, R.;Obertino, M. M.;Pacher, L.;Siviero, F.;Sola, V.;Solano, A.;Soldi, D.;Tarricone, C.;Tornago, M.;Umoret, G.;Vagnerini, A.;Shchelina, K.;Rumerio, P.;Ravera, F.;Salvatico, R.;
2024-01-01
Abstract
The measurement of Z boson production is presented as a method to determine the integrated luminosity of CMS data sets. The analysis uses proton-proton collision data, recorded by the CMS experiment at the CERN LHC in 2017 at a center-of-mass energy of 13 TeV. Events with Z bosons decaying into a pair ofmuons are selected. The total number of Z bosons produced in a fiducial volume is determined, together with the identification efficiencies and correlations from the same data set, in small intervals of 20 pb(-1) of integrated luminosity, thus facilitating the efficiency and rate measurement as a function of time and instantaneous luminosity. Using the ratio of the efficiency-corrected numbers of Z bosons, the precisely measured integrated luminosity of one data set is used to determine the luminosity of another. For the first time, a full quantitative uncertainty analysis of the use of Z bosons for the integrated luminosity measurement is performed. The uncertainty in the extrapolation between two data sets, recorded in 2017 at low and high instantaneous luminosity, is less than 0.5%. We show that the Z boson rate measurement constitutes a precise method, complementary to traditional methods, with the potential to improve the measurement of the integrated luminosity.File | Dimensione | Formato | |
---|---|---|---|
s10052-023-12268-2.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
2.75 MB
Formato
Adobe PDF
|
2.75 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.