In this paper we consider a class of evolution operators with coefficients depending on time and space variables $(t,x) \in \mathbb{T} \times \mathbb{R}^n$, where $\mathbb{T}$ is the one-dimensional torus, and prove necessary and sufficient conditions for their global solvability in (time-periodic) Gelfand–Shilov spaces. The argument of the proof is based on a characterization of these spaces in terms of the eigenfunction expansions given by a fixed self-adjoint, globally elliptic differential operator on $\mathbb{R}^n$ .

Globally solvable time-periodic evolution equations in Gelfand–Shilov classes

Marco Cappiello
2024-01-01

Abstract

In this paper we consider a class of evolution operators with coefficients depending on time and space variables $(t,x) \in \mathbb{T} \times \mathbb{R}^n$, where $\mathbb{T}$ is the one-dimensional torus, and prove necessary and sufficient conditions for their global solvability in (time-periodic) Gelfand–Shilov spaces. The argument of the proof is based on a characterization of these spaces in terms of the eigenfunction expansions given by a fixed self-adjoint, globally elliptic differential operator on $\mathbb{R}^n$ .
2024
1
32
https://link.springer.com/article/10.1007/s00208-024-02925-6
Global solvability, evolution operators, periodic coefficients, eigenfunction expansions
Fernando de Avila Silva; Marco Cappiello
File in questo prodotto:
File Dimensione Formato  
articoloMathAnn.pdf

Accesso aperto

Descrizione: articolo
Tipo di file: PDF EDITORIALE
Dimensione 427.31 kB
Formato Adobe PDF
427.31 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2027902
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact