Lithium-titanium-sulfur cathodes have garnered interest due to their distinctive properties and potential applications in lithium-ion batteries. They present various benefits, including lower cost, enhanced safety, and greater energy density compared to the commonly used transition metal oxides. The current trend in lithium-ion batteries is to move to all-solid-state chemistries in order to improve safety and energy density. Several chemistries for solid electrolytes have been studied, tested, and characterized to evaluate the applicability in energy storage system. Among those, sulfur-based Argyrodites have been coupled with cubic rock-salt type Li2TiS3 electrodes. In this work, Li2TiS3 surfaces were investigated with DFT methods in different conditions, covering the possible configurations that can occur during the cathode usage: pristine, delithiated, and overlithiated. Interfaces were built by coupling selected Li2TiS3 surfaces with the most stable Argyrodite surface, as derived from a previous study, allowing us to understand the (electro)chemical compatibility between these two sulfur-based materials.

On the Stability of the Interface between Li2TiS3 Cathode and Li6PS5Cl Solid State Electrolytes for Battery Applications: A DFT Study

Rocca, Riccardo
;
Marana, Naiara Leticia
Co-first
;
Silveri, Fabrizio;D'Amore, Maddalena;Ascrizzi, Eleonora;Sgroi, Mauro Francesco;Ferrari, Anna Maria
2024-01-01

Abstract

Lithium-titanium-sulfur cathodes have garnered interest due to their distinctive properties and potential applications in lithium-ion batteries. They present various benefits, including lower cost, enhanced safety, and greater energy density compared to the commonly used transition metal oxides. The current trend in lithium-ion batteries is to move to all-solid-state chemistries in order to improve safety and energy density. Several chemistries for solid electrolytes have been studied, tested, and characterized to evaluate the applicability in energy storage system. Among those, sulfur-based Argyrodites have been coupled with cubic rock-salt type Li2TiS3 electrodes. In this work, Li2TiS3 surfaces were investigated with DFT methods in different conditions, covering the possible configurations that can occur during the cathode usage: pristine, delithiated, and overlithiated. Interfaces were built by coupling selected Li2TiS3 surfaces with the most stable Argyrodite surface, as derived from a previous study, allowing us to understand the (electro)chemical compatibility between these two sulfur-based materials.
2024
10
10
351
359
Rocca, Riccardo; Marana, Naiara Leticia; Silveri, Fabrizio; D'Amore, Maddalena; Ascrizzi, Eleonora; Sgroi, Mauro Francesco; Li Pira, Nello; Ferrari, A...espandi
File in questo prodotto:
File Dimensione Formato  
batteries-10-00351-v2-1.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 10.8 MB
Formato Adobe PDF
10.8 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2029671
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact