In this paper we construct new univariate local C^2 quasi-interpolating splines having specific polynomial reproduction properties. The splines are directly determined by setting their Bernstein-Bézier coefficients to appropriate combinations of the given data values. In certain cases we obtain a family of quasi-interpolating operators satisfying the required conditions, so we fix some extra properties (interpolation of the vertices, extra locality, extra polynomial reproduction) in order to compute unique approximants. We also provide numerical results confirming the theoretical ones.

Local C^2-smooth spline quasi-interpolation methods

Eddargani, S.;Remogna, S.
2024-01-01

Abstract

In this paper we construct new univariate local C^2 quasi-interpolating splines having specific polynomial reproduction properties. The splines are directly determined by setting their Bernstein-Bézier coefficients to appropriate combinations of the given data values. In certain cases we obtain a family of quasi-interpolating operators satisfying the required conditions, so we fix some extra properties (interpolation of the vertices, extra locality, extra polynomial reproduction) in order to compute unique approximants. We also provide numerical results confirming the theoretical ones.
2024
160
1
6
Quasi-interpolation, Bernstein basis, BB-coefficients
Barrera, D.; Eddargani, S.; Ibáñez, M.J.; Remogna, S.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0893965924003665-main.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 619.09 kB
Formato Adobe PDF
619.09 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2029677
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact