We study Lipschitz critical points of the energy integral Omega g(detDu)dx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int _\Omega g(\det \text {D} u) \,\text {d} x$$\end{document} in two dimensions, where g is a strictly convex function. We prove that the Jacobian of any Lipschitz critical point is constant, and that the Jacobians of sequences of approximately critical points converge strongly. The latter result answers, in particular, an open problem posed by Kirchheim, M & uuml;ller and & Scaron;ver & aacute;k in 2003.

Regularity and compactness for critical points of degenerate polyconvex energies

Riccardo Tione
2024-01-01

Abstract

We study Lipschitz critical points of the energy integral Omega g(detDu)dx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int _\Omega g(\det \text {D} u) \,\text {d} x$$\end{document} in two dimensions, where g is a strictly convex function. We prove that the Jacobian of any Lipschitz critical point is constant, and that the Jacobians of sequences of approximately critical points converge strongly. The latter result answers, in particular, an open problem posed by Kirchheim, M & uuml;ller and & Scaron;ver & aacute;k in 2003.
2024
248
6
?
?
André Guerra; Riccardo Tione
File in questo prodotto:
File Dimensione Formato  
ARMA_GuerraTione.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 352.34 kB
Formato Adobe PDF
352.34 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2031277
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact