We study Lipschitz critical points of the energy integral Omega g(detDu)dx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int _\Omega g(\det \text {D} u) \,\text {d} x$$\end{document} in two dimensions, where g is a strictly convex function. We prove that the Jacobian of any Lipschitz critical point is constant, and that the Jacobians of sequences of approximately critical points converge strongly. The latter result answers, in particular, an open problem posed by Kirchheim, M & uuml;ller and & Scaron;ver & aacute;k in 2003.
Regularity and compactness for critical points of degenerate polyconvex energies
Riccardo Tione
2024-01-01
Abstract
We study Lipschitz critical points of the energy integral Omega g(detDu)dx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int _\Omega g(\det \text {D} u) \,\text {d} x$$\end{document} in two dimensions, where g is a strictly convex function. We prove that the Jacobian of any Lipschitz critical point is constant, and that the Jacobians of sequences of approximately critical points converge strongly. The latter result answers, in particular, an open problem posed by Kirchheim, M & uuml;ller and & Scaron;ver & aacute;k in 2003.File | Dimensione | Formato | |
---|---|---|---|
ARMA_GuerraTione.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
352.34 kB
Formato
Adobe PDF
|
352.34 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.