We study the decay properties of Wigner kernels for Fourier integral operators of types I and II. The symbol spaces that allow a nice decay of these kernels are the Shubin classes Gamma m ( R 2 d ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma <^>m({\mathbb {R}<^>{2d}})$$\end{document} , with negative order m. The phases considered are the so-called tame ones, which appear in the Schr & ouml;dinger propagators. The related canonical transformations are allowed to be nonlinear. It is the nonlinearity of these transformations that are the main obstacles for nice kernel localizations when symbols are taken in the H & ouml;rmander's class S 0 , 0 0 ( R 2 d ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S<^>{0}_{0,0}({\mathbb {R}<^>{2d}})$$\end{document} . Here we prove that Shubin classes overcome this problem and allow a nice kernel localization, which improves with the decreasing of the order m.

Wigner analysis of fourier integral operators with symbols in the Shubin classes

Cordero, Elena
;
Rodino, Luigi;Valenzano, Mario
2024-01-01

Abstract

We study the decay properties of Wigner kernels for Fourier integral operators of types I and II. The symbol spaces that allow a nice decay of these kernels are the Shubin classes Gamma m ( R 2 d ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma <^>m({\mathbb {R}<^>{2d}})$$\end{document} , with negative order m. The phases considered are the so-called tame ones, which appear in the Schr & ouml;dinger propagators. The related canonical transformations are allowed to be nonlinear. It is the nonlinearity of these transformations that are the main obstacles for nice kernel localizations when symbols are taken in the H & ouml;rmander's class S 0 , 0 0 ( R 2 d ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S<^>{0}_{0,0}({\mathbb {R}<^>{2d}})$$\end{document} . Here we prove that Shubin classes overcome this problem and allow a nice kernel localization, which improves with the decreasing of the order m.
2024
31
4
1
21
https://link.springer.com/article/10.1007/s00030-024-00961-4
35S05; 35S30; 47G30; 42C15
Cordero, Elena; Giacchi, Gianluca; Rodino, Luigi; Valenzano, Mario
File in questo prodotto:
File Dimensione Formato  
2024-NoDea.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 442.82 kB
Formato Adobe PDF
442.82 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2031337
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact