In end-to-end image compression, encoder and decoder are jointly trained to minimize the well known rate distortion trade-off, balancing bit rate and quality. However, each quality requires a separate encoder-decoder pair, increasing storage and switching complexity on user devices. This work introduces STanH, a differentiable quantizer based on a parametric sum of hyperbolic tangents. Implemented as a learnable activation layer, STanH can adapt pre-trained fixed-rate models to different bitrates.

METHOD FOR LEARNED IMAGE COMPRESSION AND RELATED AUTOENCODER

Alberto Presta;Attilio Fiandrotti;Marco Grangetto;Enzo Tartaglione
2024-01-01

Abstract

In end-to-end image compression, encoder and decoder are jointly trained to minimize the well known rate distortion trade-off, balancing bit rate and quality. However, each quality requires a separate encoder-decoder pair, increasing storage and switching complexity on user devices. This work introduces STanH, a differentiable quantizer based on a parametric sum of hyperbolic tangents. Implemented as a learnable activation layer, STanH can adapt pre-trained fixed-rate models to different bitrates.
2024
Domanda 102024000021274 del 24.09.2024
Università degli Studi di Torino e altro/i Ente/i
Alberto Presta, Attilio Fiandrotti, Marco Grangetto, Enzo Tartaglione
File in questo prodotto:
File Dimensione Formato  
SVT076_IT_1a bozza.pdf

Accesso riservato

Dimensione 578.82 kB
Formato Adobe PDF
578.82 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2037386
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact