An element in the Brauer group of a general complex projective K3 surface S defines a sublattice of the transcendental lattice of S. We consider those elements of prime order for which this sublattice is Hodge-isometric to the transcendental lattice of another K3 surface X. We recall that this defines a finite map between moduli spaces of polarized K3 surfaces and we compute its degree. We show how the Picard lattice of X determines the Picard lattice of S in the case that the Picard number of X is two.

SOME REMARKS ON BRAUER CLASSES OF K3-TYPE

Federica Galluzzi
;
2024-01-01

Abstract

An element in the Brauer group of a general complex projective K3 surface S defines a sublattice of the transcendental lattice of S. We consider those elements of prime order for which this sublattice is Hodge-isometric to the transcendental lattice of another K3 surface X. We recall that this defines a finite map between moduli spaces of polarized K3 surfaces and we compute its degree. We show how the Picard lattice of X determines the Picard lattice of S in the case that the Picard number of X is two.
2024
82
1
127
143
http://www.seminariomatematico.polito.it/rendiconti/82-1/A8.pdf
K3 surfaces, Brauer group
Federica Galluzzi ; Bert van Geemen
File in questo prodotto:
File Dimensione Formato  
2405.19848v1.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 197.7 kB
Formato Adobe PDF
197.7 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2045411
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact