In this paper, the construction of C^1 cubic quasi-interpolants on a three-direction mesh of R^2 is addressed. The quasi-interpolating splines are defined by directly setting their Bernstein-Bézier coefficients relative to each triangle from point and gradient values in order to reproduce the polynomials of the highest possible degree. Moreover, additional global properties are required. Finally, we provide some numerical tests confirming the approximation properties.

Construction of 2D Explicit Cubic Quasi-Interpolating Splines in Bernstein-Bézier Form

Eddargani S.;Ibanez M. J.;Remogna S.
2024-01-01

Abstract

In this paper, the construction of C^1 cubic quasi-interpolants on a three-direction mesh of R^2 is addressed. The quasi-interpolating splines are defined by directly setting their Bernstein-Bézier coefficients relative to each triangle from point and gradient values in order to reproduce the polynomials of the highest possible degree. Moreover, additional global properties are required. Finally, we provide some numerical tests confirming the approximation properties.
2024
Approximation Theory and Numerical Analysis Meet Algebra, Geometry, Topology
SEMA SIMAI Springer Series
60
71
83
9789819765072
9789819765089
Barrera D.; Eddargani S.; Ibanez M.J.; Remogna S.
File in questo prodotto:
File Dimensione Formato  
paper.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 302.29 kB
Formato Adobe PDF
302.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Cortona_REV_4.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 307.6 kB
Formato Adobe PDF
307.6 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2046950
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact