In this paper, the construction of C^1 cubic quasi-interpolants on a three-direction mesh of R^2 is addressed. The quasi-interpolating splines are defined by directly setting their Bernstein-Bézier coefficients relative to each triangle from point and gradient values in order to reproduce the polynomials of the highest possible degree. Moreover, additional global properties are required. Finally, we provide some numerical tests confirming the approximation properties.
Construction of 2D Explicit Cubic Quasi-Interpolating Splines in Bernstein-Bézier Form
Eddargani S.;Ibanez M. J.;Remogna S.
2024-01-01
Abstract
In this paper, the construction of C^1 cubic quasi-interpolants on a three-direction mesh of R^2 is addressed. The quasi-interpolating splines are defined by directly setting their Bernstein-Bézier coefficients relative to each triangle from point and gradient values in order to reproduce the polynomials of the highest possible degree. Moreover, additional global properties are required. Finally, we provide some numerical tests confirming the approximation properties.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
paper.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
302.29 kB
Formato
Adobe PDF
|
302.29 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Cortona_REV_4.pdf
Accesso aperto
Tipo di file:
PREPRINT (PRIMA BOZZA)
Dimensione
307.6 kB
Formato
Adobe PDF
|
307.6 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.