The paper studies the existence of periodic solutions of a perturbed relativistic Kepler problem of the type \begin{equation*} \dfrac{\mathrm{d}}{\mathrm{d}t}\left(\frac{m\dot{x}}{\sqrt{1-|\dot{x}|^{2}/c^{2}}}\right) = -\alpha\frac{x}{|x|^{3}} + \varepsilon \, \nabla_{x} U(t,x), \qquad x \in \mathbb{R}^d\setminus\{0\}, \end{equation*} with $d=2$ or $d=3$, bifurcating, for $\varepsilon$ small enough, from the set of circular solutions of the unperturbed system. Both the case of the fixed-period problem (assuming that $U$ is $T$-periodic in time) and the case of the fixed-energy problem (assuming that $U$ is independent of time) are considered.
Nearly-circular periodic solutions of perturbed relativistic Kepler problems: the fixed-period and the fixed-energy problems
A. Boscaggin
;G. Feltrin;D. Papini
2025-01-01
Abstract
The paper studies the existence of periodic solutions of a perturbed relativistic Kepler problem of the type \begin{equation*} \dfrac{\mathrm{d}}{\mathrm{d}t}\left(\frac{m\dot{x}}{\sqrt{1-|\dot{x}|^{2}/c^{2}}}\right) = -\alpha\frac{x}{|x|^{3}} + \varepsilon \, \nabla_{x} U(t,x), \qquad x \in \mathbb{R}^d\setminus\{0\}, \end{equation*} with $d=2$ or $d=3$, bifurcating, for $\varepsilon$ small enough, from the set of circular solutions of the unperturbed system. Both the case of the fixed-period problem (assuming that $U$ is $T$-periodic in time) and the case of the fixed-energy problem (assuming that $U$ is independent of time) are considered.File | Dimensione | Formato | |
---|---|---|---|
25BosFelPapCVPDE.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
534.82 kB
Formato
Adobe PDF
|
534.82 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.