The paper studies the existence of periodic solutions of a perturbed relativistic Kepler problem of the type \begin{equation*} \dfrac{\mathrm{d}}{\mathrm{d}t}\left(\frac{m\dot{x}}{\sqrt{1-|\dot{x}|^{2}/c^{2}}}\right) = -\alpha\frac{x}{|x|^{3}} + \varepsilon \, \nabla_{x} U(t,x), \qquad x \in \mathbb{R}^d\setminus\{0\}, \end{equation*} with $d=2$ or $d=3$, bifurcating, for $\varepsilon$ small enough, from the set of circular solutions of the unperturbed system. Both the case of the fixed-period problem (assuming that $U$ is $T$-periodic in time) and the case of the fixed-energy problem (assuming that $U$ is independent of time) are considered.

Nearly-circular periodic solutions of perturbed relativistic Kepler problems: the fixed-period and the fixed-energy problems

A. Boscaggin
;
G. Feltrin;D. Papini
2025-01-01

Abstract

The paper studies the existence of periodic solutions of a perturbed relativistic Kepler problem of the type \begin{equation*} \dfrac{\mathrm{d}}{\mathrm{d}t}\left(\frac{m\dot{x}}{\sqrt{1-|\dot{x}|^{2}/c^{2}}}\right) = -\alpha\frac{x}{|x|^{3}} + \varepsilon \, \nabla_{x} U(t,x), \qquad x \in \mathbb{R}^d\setminus\{0\}, \end{equation*} with $d=2$ or $d=3$, bifurcating, for $\varepsilon$ small enough, from the set of circular solutions of the unperturbed system. Both the case of the fixed-period problem (assuming that $U$ is $T$-periodic in time) and the case of the fixed-energy problem (assuming that $U$ is independent of time) are considered.
2025
1
29
https://arxiv.org/abs/2405.11189
A. Boscaggin; G. Feltrin; D. Papini
File in questo prodotto:
File Dimensione Formato  
25BosFelPapCVPDE.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 534.82 kB
Formato Adobe PDF
534.82 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2050450
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact