We consider a hidden Markov model for discretely observed binary data, with underlying unobserved dynamic probabilities driven by a one-dimensional Wright–Fisher diffusion. We leverage on recent results on the posterior distribution of the diffusion state given data collected at two time points, to investigate a non-informative prior specification for inference at an intermediate time. Our findings describe explicitly the probability distribution of the data points retention for inference at this intermediate time.

Non-informative priors in Wright–Fisher smoothing

Filippo Ascolani;Ylenia F. Buttigliero
;
Matteo Ruggiero
2024-01-01

Abstract

We consider a hidden Markov model for discretely observed binary data, with underlying unobserved dynamic probabilities driven by a one-dimensional Wright–Fisher diffusion. We leverage on recent results on the posterior distribution of the diffusion state given data collected at two time points, to investigate a non-informative prior specification for inference at an intermediate time. Our findings describe explicitly the probability distribution of the data points retention for inference at this intermediate time.
2024
52° Riunione Scientifica della Società Italiana di Statistica
Bari
Dal 17 al 20 giugno 2024
Methodological and Applied Statistics and Demography III SIS 2024, Short Papers, Contributed Sessions 1
Springer
1
5
978-3-031-64430-6
Filippo Ascolani, Ylenia F. Buttigliero, Matteo Ruggiero
File in questo prodotto:
File Dimensione Formato  
2024-SIS-WF.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 310.5 kB
Formato Adobe PDF
310.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2052272
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact