The hexagonal structure of LiBH4 at room temperature can be stabilised by substituting the BH4− anion with I−, leading to high Li-ion conductive materials. A thermodynamic description of the pseudo-binary LiBH4-LiI system is presented. The system has been explored investigating several compositions, synthetized by ball milling and subsequently annealed. X-ray diffraction and Differential Scanning Calorimetry have been exploited to determine structural and thermodynamic features of various samples. The monophasic zone of the hexagonal Li(BH4)1−x(I)x solid solution has been experimentally defined equal to 0.18 ≤ x ≤ 0.60 at 25 °C. In order to establish the formation of the hexagonal solid solution, the enthalpy of mixing was experimentally determined, converging to a value of 1800 ± 410 J mol−1. Additionally, the enthalpy of melting was acquired for samples that differ in molar fraction. By merging experimental results, literature data and ab initio theoretical calculations, the pseudo-binary LiBH4-LiI phase diagram has been assessed and evaluated across all compositions and temperature ranges by applying the CALPHAD method.

Experimental and theoretical studies of the LiBH4–LiI phase diagram

Mazzucco, Asya
First
;
Dematteis, Erika Michela;Corno, Marta;Sgroi, Mauro Francesco;Palumbo, Mauro;Baricco, Marcello
Last
2024-01-01

Abstract

The hexagonal structure of LiBH4 at room temperature can be stabilised by substituting the BH4− anion with I−, leading to high Li-ion conductive materials. A thermodynamic description of the pseudo-binary LiBH4-LiI system is presented. The system has been explored investigating several compositions, synthetized by ball milling and subsequently annealed. X-ray diffraction and Differential Scanning Calorimetry have been exploited to determine structural and thermodynamic features of various samples. The monophasic zone of the hexagonal Li(BH4)1−x(I)x solid solution has been experimentally defined equal to 0.18 ≤ x ≤ 0.60 at 25 °C. In order to establish the formation of the hexagonal solid solution, the enthalpy of mixing was experimentally determined, converging to a value of 1800 ± 410 J mol−1. Additionally, the enthalpy of melting was acquired for samples that differ in molar fraction. By merging experimental results, literature data and ab initio theoretical calculations, the pseudo-binary LiBH4-LiI phase diagram has been assessed and evaluated across all compositions and temperature ranges by applying the CALPHAD method.
2024
14
17
12038
12048
Mazzucco, Asya; Dematteis, Erika Michela; Gulino, Valerio; Corno, Marta; Sgroi, Mauro Francesco; Palumbo, Mauro; Baricco, Marcello
File in questo prodotto:
File Dimensione Formato  
MB_407.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 825.12 kB
Formato Adobe PDF
825.12 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2068039
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact