The hexagonal structure of LiBH4 at room temperature can be stabilised by substituting the BH4− anion with I−, leading to high Li-ion conductive materials. A thermodynamic description of the pseudo-binary LiBH4-LiI system is presented. The system has been explored investigating several compositions, synthetized by ball milling and subsequently annealed. X-ray diffraction and Differential Scanning Calorimetry have been exploited to determine structural and thermodynamic features of various samples. The monophasic zone of the hexagonal Li(BH4)1−x(I)x solid solution has been experimentally defined equal to 0.18 ≤ x ≤ 0.60 at 25 °C. In order to establish the formation of the hexagonal solid solution, the enthalpy of mixing was experimentally determined, converging to a value of 1800 ± 410 J mol−1. Additionally, the enthalpy of melting was acquired for samples that differ in molar fraction. By merging experimental results, literature data and ab initio theoretical calculations, the pseudo-binary LiBH4-LiI phase diagram has been assessed and evaluated across all compositions and temperature ranges by applying the CALPHAD method.
Experimental and theoretical studies of the LiBH4–LiI phase diagram
Mazzucco, AsyaFirst
;Dematteis, Erika Michela;Corno, Marta;Sgroi, Mauro Francesco;Palumbo, Mauro;Baricco, MarcelloLast
2024-01-01
Abstract
The hexagonal structure of LiBH4 at room temperature can be stabilised by substituting the BH4− anion with I−, leading to high Li-ion conductive materials. A thermodynamic description of the pseudo-binary LiBH4-LiI system is presented. The system has been explored investigating several compositions, synthetized by ball milling and subsequently annealed. X-ray diffraction and Differential Scanning Calorimetry have been exploited to determine structural and thermodynamic features of various samples. The monophasic zone of the hexagonal Li(BH4)1−x(I)x solid solution has been experimentally defined equal to 0.18 ≤ x ≤ 0.60 at 25 °C. In order to establish the formation of the hexagonal solid solution, the enthalpy of mixing was experimentally determined, converging to a value of 1800 ± 410 J mol−1. Additionally, the enthalpy of melting was acquired for samples that differ in molar fraction. By merging experimental results, literature data and ab initio theoretical calculations, the pseudo-binary LiBH4-LiI phase diagram has been assessed and evaluated across all compositions and temperature ranges by applying the CALPHAD method.| File | Dimensione | Formato | |
|---|---|---|---|
|
MB_407.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
825.12 kB
Formato
Adobe PDF
|
825.12 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



