When training a Learned Image Compression model, the loss function is minimized such that the encoder and the decoder attain a target Rate-Distorsion trade-off. Therefore, a distinct model shall be trained and stored at the transmitter and receiver for each target rate, fostering the quest for efficient variable bitrate compression schemes. This paper proposes plugging Low-Rank Adapters into a transformer-based pre-trained LIC model and training them to meet different target rates. With our method, encoding an image at a variable rate is as simple as training the corresponding adapters and plugging them into the frozen pre-trained model. Our experiments show performance comparable with state-of-the-art fixed-rate LIC models at a fraction of the training and deployment cost. We publicly released the code at https://github.com/EIDOSLAB/ALICE.
ALICE: Adapt your Learnable Image Compression modEl for variable bitrates
Spadaro, Gabriele
First
;Presta, Alberto;Fiandrotti, Attilio;Grangetto, Marco;Tartaglione, Enzo
2024-01-01
Abstract
When training a Learned Image Compression model, the loss function is minimized such that the encoder and the decoder attain a target Rate-Distorsion trade-off. Therefore, a distinct model shall be trained and stored at the transmitter and receiver for each target rate, fostering the quest for efficient variable bitrate compression schemes. This paper proposes plugging Low-Rank Adapters into a transformer-based pre-trained LIC model and training them to meet different target rates. With our method, encoding an image at a variable rate is as simple as training the corresponding adapters and plugging them into the frozen pre-trained model. Our experiments show performance comparable with state-of-the-art fixed-rate LIC models at a fraction of the training and deployment cost. We publicly released the code at https://github.com/EIDOSLAB/ALICE.| File | Dimensione | Formato | |
|---|---|---|---|
|
ALICE_Adapt_your_Learnable_Image_Compression_modEl_for_variable_bitrates.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
1.27 MB
Formato
Adobe PDF
|
1.27 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



