We search for the rare decay B+→K+νν¯ in a 362 fb-1 sample of electron-positron collisions at the δ (4S) resonance collected with the Belle II detector at the SuperKEKB collider. We use the inclusive properties of the accompanying B meson in δ (4S)→BB¯ events to suppress background from other decays of the signal B candidate and light-quark pair production. We validate the measurement with an auxiliary analysis based on a conventional hadronic reconstruction of the accompanying B meson. For background suppression, we exploit distinct signal features using machine learning methods tuned with simulated data. The signal-reconstruction efficiency and background suppression are validated through various control channels. The branching fraction is extracted in a maximum likelihood fit. Our inclusive and hadronic analyses yield consistent results for the B+→K+νν¯ branching fraction of [2.7±0.5(stat)±0.5(syst)]×10-5 and [1.1-0.8+0.9(stat)-0.5+0.8(syst)]×10-5, respectively. Combining the results, we determine the branching fraction of the decay B+→K+νν¯ to be [2.3±0.5(stat)-0.4+0.5(syst)]×10-5, providing the first evidence for this decay at 3.5 standard deviations. The combined result is 2.7 standard deviations above the standard model expectation.
Evidence for B+ → K+νν¯ decays
Bianchi, F.;Biswas, D.;Das, S.;Destefanis, M.;Maggiora, M.;Marcello, S.;Mussa, R.;Spataro, S.;Tamponi, U.;
2024-01-01
Abstract
We search for the rare decay B+→K+νν¯ in a 362 fb-1 sample of electron-positron collisions at the δ (4S) resonance collected with the Belle II detector at the SuperKEKB collider. We use the inclusive properties of the accompanying B meson in δ (4S)→BB¯ events to suppress background from other decays of the signal B candidate and light-quark pair production. We validate the measurement with an auxiliary analysis based on a conventional hadronic reconstruction of the accompanying B meson. For background suppression, we exploit distinct signal features using machine learning methods tuned with simulated data. The signal-reconstruction efficiency and background suppression are validated through various control channels. The branching fraction is extracted in a maximum likelihood fit. Our inclusive and hadronic analyses yield consistent results for the B+→K+νν¯ branching fraction of [2.7±0.5(stat)±0.5(syst)]×10-5 and [1.1-0.8+0.9(stat)-0.5+0.8(syst)]×10-5, respectively. Combining the results, we determine the branching fraction of the decay B+→K+νν¯ to be [2.3±0.5(stat)-0.4+0.5(syst)]×10-5, providing the first evidence for this decay at 3.5 standard deviations. The combined result is 2.7 standard deviations above the standard model expectation.| File | Dimensione | Formato | |
|---|---|---|---|
|
PhysRevD.109.112006.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
13.4 MB
Formato
Adobe PDF
|
13.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



