This paper introduces a new multi-class classification task: the prediction of the Structural-Demographic phase of historical cycles - such as growth, impoverishment and crisis - from text describing historical events. To achieve this, we leveraged data from the Seshat project, annotated it following specific guidelines and then evaluated the consistency between three annotators. The classification experiments, with transformers and Large Language Models, show that 2 of 5 phases can be detected with good accuracy. We believe that this task could have a great impact on comparative history and can be helped by event extraction in NLP.
History Repeats: Historical Phase Recognition from Short Texts
Basile V.
2024-01-01
Abstract
This paper introduces a new multi-class classification task: the prediction of the Structural-Demographic phase of historical cycles - such as growth, impoverishment and crisis - from text describing historical events. To achieve this, we leveraged data from the Seshat project, annotated it following specific guidelines and then evaluated the consistency between three annotators. The classification experiments, with transformers and Large Language Models, show that 2 of 5 phases can be detected with good accuracy. We believe that this task could have a great impact on comparative history and can be helped by event extraction in NLP.| File | Dimensione | Formato | |
|---|---|---|---|
|
2024.clicit-1.24.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
1.53 MB
Formato
Adobe PDF
|
1.53 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



