Missing and corrupted labels can significantly ruin the learning process and, consequently, the classifier performance. Multi-label learning where each instance is tagged with variable number of labels is particularly affected. Although missing labels (false-negatives) is a well-studied problem in multi-label learning, it is considerably more challenging to have both false-negatives (missing labels) and false-positives (corrupted labels) simultaneously in multi-label datasets. In this paper, we propose Multi-Label Loss with Self Correction (MLLSC) which is a loss robust against coincident missing and corrupted labels. MLLSC computes the loss based on the true-positive (true-negative) or false-positive (false-negative) labels and deep neural network expertise. To distinguish between false-positive (false-negative) and true-positive (true-negative) labels, we use the output probability of the deep neural network during the learning process. Our method As MLLSC can be combined with different types of multi-label loss functions, we also address the label imbalance problem of multi-label datasets. Empirical evaluation on real-world vision datasets, i.e., MS-COCO, and MIR-FLICKR, shows that our method under medium (0.3) and high (0.6) corrupted and missing label probabilities outperform the state-of-the-art methods by, on average 23.97% and 9.31% mean average precision (mAP) points, respectively.

Multi Label Loss Correction against Missing and Corrupted Labels

Birke R.;Chen L. Y.
2022-01-01

Abstract

Missing and corrupted labels can significantly ruin the learning process and, consequently, the classifier performance. Multi-label learning where each instance is tagged with variable number of labels is particularly affected. Although missing labels (false-negatives) is a well-studied problem in multi-label learning, it is considerably more challenging to have both false-negatives (missing labels) and false-positives (corrupted labels) simultaneously in multi-label datasets. In this paper, we propose Multi-Label Loss with Self Correction (MLLSC) which is a loss robust against coincident missing and corrupted labels. MLLSC computes the loss based on the true-positive (true-negative) or false-positive (false-negative) labels and deep neural network expertise. To distinguish between false-positive (false-negative) and true-positive (true-negative) labels, we use the output probability of the deep neural network during the learning process. Our method As MLLSC can be combined with different types of multi-label loss functions, we also address the label imbalance problem of multi-label datasets. Empirical evaluation on real-world vision datasets, i.e., MS-COCO, and MIR-FLICKR, shows that our method under medium (0.3) and high (0.6) corrupted and missing label probabilities outperform the state-of-the-art methods by, on average 23.97% and 9.31% mean average precision (mAP) points, respectively.
2022
Asian Conference on Machine Learning
India
2022
Proceedings of Machine Learning Research
ML Research Press
189
359
374
Corrupted labels; Loss correction; Missing labels; Multi-label learning; Robust classifier
Ghiassi A.; Birke R.; Chen L.Y.
File in questo prodotto:
File Dimensione Formato  
ghiassi23b-2.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 2.04 MB
Formato Adobe PDF
2.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2077311
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 0
social impact