Noisy and corrupted labels are shown to significantly undermine the performance of multi-label learning, which has multiple labels in each image. Correcting the loss via a label corruption matrix is effective in improving the robustness of single-label classification against noisy labels. However, estimating the corruption matrix for multi-label problems is no mean feat due to the unbalanced distributions of labels and the presence of multiple objects that may be mapped into the same labels. In this paper, we propose a robust multi-label classifier against label noise, TLCM, which corrects the loss based on a corruption matrix estimated on trusted data. To overcome the challenge of unbalanced label distribution and multi-object mapping, we use trusted single-label data as regulators to correct the multi-label corruption matrix. Empirical evaluation on real-world vision and object detection datasets, i.e., MS-COCO, NUS-WIDE, and MIRFLICKR, shows that our method under medium (30%) and high (60%) corruption levels outperforms state-of-the-art multi-label classifier (ASL) and noise-resilient multi-label classifier (MPVAE), by on average 12.5% and 26.3% mean average precision (mAP) points, respectively.

Trusted Loss Correction for Noisy Multi-Label Learning

Birke R.;Chen L. Y.
2022-01-01

Abstract

Noisy and corrupted labels are shown to significantly undermine the performance of multi-label learning, which has multiple labels in each image. Correcting the loss via a label corruption matrix is effective in improving the robustness of single-label classification against noisy labels. However, estimating the corruption matrix for multi-label problems is no mean feat due to the unbalanced distributions of labels and the presence of multiple objects that may be mapped into the same labels. In this paper, we propose a robust multi-label classifier against label noise, TLCM, which corrects the loss based on a corruption matrix estimated on trusted data. To overcome the challenge of unbalanced label distribution and multi-object mapping, we use trusted single-label data as regulators to correct the multi-label corruption matrix. Empirical evaluation on real-world vision and object detection datasets, i.e., MS-COCO, NUS-WIDE, and MIRFLICKR, shows that our method under medium (30%) and high (60%) corruption levels outperforms state-of-the-art multi-label classifier (ASL) and noise-resilient multi-label classifier (MPVAE), by on average 12.5% and 26.3% mean average precision (mAP) points, respectively.
2022
Asian Conference on Machine Learning
India
2022
Proceedings of Machine Learning Research
ML Research Press
189
343
358
Corrupted Labels; Corruption Matrix Estimation; Deep Neural Network; Multi Label Learning
Ghiassi A.; Pene C.O.; Birke R.; Chen L.Y.
File in questo prodotto:
File Dimensione Formato  
ghiassi23a-2.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 3.88 MB
Formato Adobe PDF
3.88 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2077330
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 0
social impact