The highly compartmentalized anatomy of the ear aggravates drug delivery, which is used to combat hearing-related diseases. Novel nanosized drug vehicles are thought to overcome the limitations of classic approaches. In this article, we summarize the nanotechnology-based efforts involving nano-objects, such as liposomes, polymersomes, lipidic nanocapsules and poly(lactic-co-glycolic acid) nanoparticles, as well as nanocoatings of implants to provide an efficient means for drug transfer in the ear. Modern strategies do not only enhance drug delivery efficiency, in the inner ear these vector systems also aim for specific uptake into hair cells and spiral ganglion neurons. These novel peptide-mediated strategies for specific delivery are reviewed in this article. Finally, the biosafety of these vector systems is still an outstanding issue, since long-term application to the ear has not yet been assessed. © 2013 Future Medicine Ltd.

Nanomedicine strategies for drug delivery to the ear

Pritz, Christian Oliver;
2013-01-01

Abstract

The highly compartmentalized anatomy of the ear aggravates drug delivery, which is used to combat hearing-related diseases. Novel nanosized drug vehicles are thought to overcome the limitations of classic approaches. In this article, we summarize the nanotechnology-based efforts involving nano-objects, such as liposomes, polymersomes, lipidic nanocapsules and poly(lactic-co-glycolic acid) nanoparticles, as well as nanocoatings of implants to provide an efficient means for drug transfer in the ear. Modern strategies do not only enhance drug delivery efficiency, in the inner ear these vector systems also aim for specific uptake into hair cells and spiral ganglion neurons. These novel peptide-mediated strategies for specific delivery are reviewed in this article. Finally, the biosafety of these vector systems is still an outstanding issue, since long-term application to the ear has not yet been assessed. © 2013 Future Medicine Ltd.
2013
8
7
1155
1172
antibody; cochlea; hearing loss; inner ear; local therapy; nanotechnology- mediated drug delivery; peptide ligand; round window membrane; specific targeting; surface functionalization
Pritz, Christian Oliver; Dudás, József; Rask-Andersen, Helge; Schrott-Fischer, Anneliese; Glueckert, Rudolf
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2079172
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 42
social impact