We consider the problem of inferring the mutation parameters from a discretely observed scalar Wright--Fisher diffusion through the use of likelihood-free methods. We propose an adaptive approximate Bayesian computation scheme, where previously accepted parameter draws inform those in subsequent iterations. We provide empirical evidence that the method recovers the true data generating parameters, even when using a non-sufficient summary statistic.

Likelihood-Free Inference for Direct Observations of a Scalar Stationary Wright--Fisher Diffusion

Jaromir Sant;Luca Frattegiani;Matteo Ruggiero
2025-01-01

Abstract

We consider the problem of inferring the mutation parameters from a discretely observed scalar Wright--Fisher diffusion through the use of likelihood-free methods. We propose an adaptive approximate Bayesian computation scheme, where previously accepted parameter draws inform those in subsequent iterations. We provide empirical evidence that the method recovers the true data generating parameters, even when using a non-sufficient summary statistic.
2025
Riunione Scientifica della Società Italiana di Statistica
Genova
Giugno 2025
Statistics for Innovation IV
Springer Nature Switzerland
305
311
978-3-031-96033-8
Jaromir Sant, Luca Frattegiani, Matteo Ruggiero,
File in questo prodotto:
File Dimensione Formato  
2025-SIS-ABC.pdf

Accesso riservato

Dimensione 505.2 kB
Formato Adobe PDF
505.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2082291
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact