We consider the problem of inferring the mutation parameters from a discretely observed scalar Wright--Fisher diffusion through the use of likelihood-free methods. We propose an adaptive approximate Bayesian computation scheme, where previously accepted parameter draws inform those in subsequent iterations. We provide empirical evidence that the method recovers the true data generating parameters, even when using a non-sufficient summary statistic.
Likelihood-Free Inference for Direct Observations of a Scalar Stationary Wright--Fisher Diffusion
Jaromir Sant;Luca Frattegiani;Matteo Ruggiero
2025-01-01
Abstract
We consider the problem of inferring the mutation parameters from a discretely observed scalar Wright--Fisher diffusion through the use of likelihood-free methods. We propose an adaptive approximate Bayesian computation scheme, where previously accepted parameter draws inform those in subsequent iterations. We provide empirical evidence that the method recovers the true data generating parameters, even when using a non-sufficient summary statistic.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
2025-SIS-ABC.pdf
Accesso riservato
Dimensione
505.2 kB
Formato
Adobe PDF
|
505.2 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



