In large-scale distributed systems, failures are routine events whose occurrences increase with the number of computational tasks and execution locations. The advantage of representing an application as a workflow is the possibility of exploiting Workflow Management System (WMS) features such as portability, scalability, and, crucially, reliability. Among these, reliability is essential for ensuring robust execution in dynamic and failure-prone environments. In recent years, the emergence of hybrid workflows has posed new and intriguing challenges by increasing the possibility of distributing computations involving heterogeneous and independent environments. Consequently, the number of possible points of failure during the execution increased, creating a need for sophisticated fault tolerance mechanisms capable of addressing the specific requirements of hybrid systems. This work introduces a formal framework for a fault tolerance mechanism in hybrid workflows, enabling failure recovery through a rollback approach. The framework is rigorously defined by adapting and extending an existing workflow semantics tailored for hybrid execution. Our method leverages provenance data from workflow execution up to the point of failure, and creates a recovery workflow that spans multiple infrastructures. The rollback approach provides a robust and reliable strategy to ensure resilience against step failures and potential data loss. We then implement this mechanism in the StreamFlow WMS, and evaluate it using two case studies: the 1000 Genomes workflow and a synthetic workflow featuring iterative patterns. Experiments showcase the conceptual validity of our approach and assess the overhead introduced by the mechanism, including data availability checks.
A formal framework for fault tolerance in hybrid scientific workflows
Alberto Mulone;Doriana Medic;Iacopo Colonnelli;Marco Aldinucci
2025-01-01
Abstract
In large-scale distributed systems, failures are routine events whose occurrences increase with the number of computational tasks and execution locations. The advantage of representing an application as a workflow is the possibility of exploiting Workflow Management System (WMS) features such as portability, scalability, and, crucially, reliability. Among these, reliability is essential for ensuring robust execution in dynamic and failure-prone environments. In recent years, the emergence of hybrid workflows has posed new and intriguing challenges by increasing the possibility of distributing computations involving heterogeneous and independent environments. Consequently, the number of possible points of failure during the execution increased, creating a need for sophisticated fault tolerance mechanisms capable of addressing the specific requirements of hybrid systems. This work introduces a formal framework for a fault tolerance mechanism in hybrid workflows, enabling failure recovery through a rollback approach. The framework is rigorously defined by adapting and extending an existing workflow semantics tailored for hybrid execution. Our method leverages provenance data from workflow execution up to the point of failure, and creates a recovery workflow that spans multiple infrastructures. The rollback approach provides a robust and reliable strategy to ensure resilience against step failures and potential data loss. We then implement this mechanism in the StreamFlow WMS, and evaluate it using two case studies: the 1000 Genomes workflow and a synthetic workflow featuring iterative patterns. Experiments showcase the conceptual validity of our approach and assess the overhead introduced by the mechanism, including data availability checks.| File | Dimensione | Formato | |
|---|---|---|---|
|
1-s2.0-S0167739X25004820-main.pdf
Accesso aperto
Descrizione: PDF Editoriale
Tipo di file:
PDF EDITORIALE
Dimensione
8.9 MB
Formato
Adobe PDF
|
8.9 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



