Deep learning methods are the state-of-the-art for medical imaging segmentation tasks. Still, numerous segmentation algorithms based on heuristic-based methods have been proposed with exceptional results. To validate segmentation algorithms, manual annotations are typically considered as ground truth. However, manual annotations often suffer from inter/intra-operator variability and can also be occasionally inaccurate, especially when considering time-consuming and precise tasks. A sample case is the manual delineation of the lumen-intima (LI) and media-adventitia (MA) borders for intima-media thickness (IMT) measurement in B-mode ultrasound images. In this work, a novel hybrid learning paradigm which combines manual segmentations with the automatic segmentation of a dynamic programming technique for ground truth determination is presented. A profile consensus strategy is proposed to construct the hybrid ground truth. Two open-source datasets (n=2576) were employed for training four deep learning networks using the hybrid learning paradigm and three single source training targets as a comparison. The pipeline was fixed across the four tests and included a Faster R-CNN detection network to locate the carotid artery and then subsequent division into patches which were segmented using a UNet. The validation of the results was performed on an external test set comparing the predictions of the four different models to the annotations of three independent manual operators. The hybrid learning paradigm showed the best overall segmentation results (Dice=0.907±0.037, p<0.001) and demonstrated an exceptional correlation between the mean of three operators and the automatic measure (ICC(2,1)=0.958), demonstrating how the incorporation of heuristic-based segmentation methods within the learning paradigm of a deep neural network can enhance and improve final segmentation performance results.

Can multiple segmentation methods enhance deep learning networks generalization? A novel hybrid learning paradigm

Marzola, Francesco
First
;
Meiburger, Kristen;Molinari, Filippo;Salvi, Massimo
2023-01-01

Abstract

Deep learning methods are the state-of-the-art for medical imaging segmentation tasks. Still, numerous segmentation algorithms based on heuristic-based methods have been proposed with exceptional results. To validate segmentation algorithms, manual annotations are typically considered as ground truth. However, manual annotations often suffer from inter/intra-operator variability and can also be occasionally inaccurate, especially when considering time-consuming and precise tasks. A sample case is the manual delineation of the lumen-intima (LI) and media-adventitia (MA) borders for intima-media thickness (IMT) measurement in B-mode ultrasound images. In this work, a novel hybrid learning paradigm which combines manual segmentations with the automatic segmentation of a dynamic programming technique for ground truth determination is presented. A profile consensus strategy is proposed to construct the hybrid ground truth. Two open-source datasets (n=2576) were employed for training four deep learning networks using the hybrid learning paradigm and three single source training targets as a comparison. The pipeline was fixed across the four tests and included a Faster R-CNN detection network to locate the carotid artery and then subsequent division into patches which were segmented using a UNet. The validation of the results was performed on an external test set comparing the predictions of the four different models to the annotations of three independent manual operators. The hybrid learning paradigm showed the best overall segmentation results (Dice=0.907±0.037, p<0.001) and demonstrated an exceptional correlation between the mean of three operators and the automatic measure (ICC(2,1)=0.958), demonstrating how the incorporation of heuristic-based segmentation methods within the learning paradigm of a deep neural network can enhance and improve final segmentation performance results.
2023
SPIE MEDICAL IMAGING 2023
San Diego (USA)
19-24 Febbraio 2023
Medical Imaging 2023: Computer-Aided Diagnosis
SPIE Digital Library
12465
39
43
9781510660359
https://doi.org/10.1117/12.2653394
Deep Learning; Segmentation; Hybrid Ground Truth; Intima media thickness; Ultrasound; Controllable AI; UNet
Marzola, Francesco; Meiburger, Kristen; Molinari, Filippo; Salvi, Massimo
File in questo prodotto:
File Dimensione Formato  
Marzola-CanMultiple.pdf

Accesso riservato

Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2104084
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact