Amorphous hydrogenated germanium–carbon alloys (Ge1−xCx:H) were synthesized by X-ray-activated Chemical Vapor Deposition and investigated to evaluate the effects of annealing on their structure, composition, and properties given the limited information available on their behavior at high temperatures. Thermogravimetric and elemental analyses showed that the materials are stable up to 573 K; above this temperature, the carbon and hydrogen content progressively decrease, favoring structural reorganization. XRPD and Raman analyses demonstrate that the as-deposited films are fully amorphous, while annealing promotes the progressive formation of crystalline Ge. This crystallization occurs heterogeneously through the nucleation of small “islands” embedded within the sample matrix. Optical measurements reveal a narrowing of the band gap with increasing annealing temperature and time. The weak contribution of sp2-carbon observed in some Raman spectra indicates that band gap reduction is mainly governed by the overall composition and the variation of germanium hydrogen bonding configuration, rather than by graphitization. The study also notes that the parameter B1/2 does not follow a regular trend due to the complex nature of the material’s microstructural evolution during annealing. These results provide a comprehensive picture of the annealing-driven transformations in Ge–C:H alloys relevant for the design of thermally stable optoelectronic materials.
Annealing-Driven Structural and Optical Evolution of Amorphous Ge–C:H Alloys
Domenica MarabelloFirst
Membro del Collaboration Group
;Alma CiociMembro del Collaboration Group
;Mauro SgroiMembro del Collaboration Group
;Paola Benzi
Last
Membro del Collaboration Group
2025-01-01
Abstract
Amorphous hydrogenated germanium–carbon alloys (Ge1−xCx:H) were synthesized by X-ray-activated Chemical Vapor Deposition and investigated to evaluate the effects of annealing on their structure, composition, and properties given the limited information available on their behavior at high temperatures. Thermogravimetric and elemental analyses showed that the materials are stable up to 573 K; above this temperature, the carbon and hydrogen content progressively decrease, favoring structural reorganization. XRPD and Raman analyses demonstrate that the as-deposited films are fully amorphous, while annealing promotes the progressive formation of crystalline Ge. This crystallization occurs heterogeneously through the nucleation of small “islands” embedded within the sample matrix. Optical measurements reveal a narrowing of the band gap with increasing annealing temperature and time. The weak contribution of sp2-carbon observed in some Raman spectra indicates that band gap reduction is mainly governed by the overall composition and the variation of germanium hydrogen bonding configuration, rather than by graphitization. The study also notes that the parameter B1/2 does not follow a regular trend due to the complex nature of the material’s microstructural evolution during annealing. These results provide a comprehensive picture of the annealing-driven transformations in Ge–C:H alloys relevant for the design of thermally stable optoelectronic materials.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_Benzi - Annealing-Driven Structural and Optical Evolution of Amorphous Ge–C-H Alloys.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
1.66 MB
Formato
Adobe PDF
|
1.66 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



