We consider discrete nonparametric priors which induce Gibbs-type exchangeable random partitions and investigate their posterior behavior in detail. In particular, we deduce conditional distributions and the corresponding Bayesian nonparametric estimators, which can be readily exploited for predicting various features of additional samples. The results provide useful tools for genomic applications where prediction of future outcomes is required.

Bayesian nonparametric estimators derived from conditional Gibbs structures

PRUENSTER, Igor;
2008-01-01

Abstract

We consider discrete nonparametric priors which induce Gibbs-type exchangeable random partitions and investigate their posterior behavior in detail. In particular, we deduce conditional distributions and the corresponding Bayesian nonparametric estimators, which can be readily exploited for predicting various features of additional samples. The results provide useful tools for genomic applications where prediction of future outcomes is required.
2008
18
1519
1547
http://www.imstat.org/aap/
Bayesian nonparametrics; Dirichlet process; exchangeable random partitions; generalized factorial coefficients; generalized gamma process; population genetics; species sampling models; two parameter Poisson–Dirichlet process.
A. LIJOI; I. PRUENSTER; S.G. WALKER
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/22756
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 41
social impact