We study the dispersive properties of the Schrödinger equation. Precisely, we look for estimates which give a control of the local regularity and decay at infinity separately. The Banach spaces that allow such a treatment are the Wiener amalgam spaces, and Strichartz-type estimates are proved in this framework. These estimates improve some of the classical ones in the case of large time.

Strichartz estimates in Wiener amalgam spaces for the Schrödinger equation.

CORDERO, Elena;
2008-01-01

Abstract

We study the dispersive properties of the Schrödinger equation. Precisely, we look for estimates which give a control of the local regularity and decay at infinity separately. The Banach spaces that allow such a treatment are the Wiener amalgam spaces, and Strichartz-type estimates are proved in this framework. These estimates improve some of the classical ones in the case of large time.
2008
281
1
25
41
http://arxiv.org/pdf/math/0610229v1.pdf
Dispersive estimates; Schrödinger equation; Strichartz estimates; Wiener amalgam spaces
E. Cordero; F. Nicola
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/24944
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 24
social impact