We prove dimensional upper bounds for admissible Lie subgroups H of G = H^d × Sp(d,R), d ≥ 2. The notion of admissibility captures natural geometric phenomena of the phase space and it is a sufficient condition for a subgroup to be reproducing. It is expressed in terms of absolutely convergent integrals of Wigner distributions, translated by the affine action of the subgroup. We show that dim H ≤ d^2 + 2d, whereas if H ⊂ Sp(d,R), then dim H ≤ d^2 + 1. Both bounds are shown to be optimal.

Dimensional upper bounds for admissible subgroups for the metaplectic representation

CORDERO, Elena;
2010-01-01

Abstract

We prove dimensional upper bounds for admissible Lie subgroups H of G = H^d × Sp(d,R), d ≥ 2. The notion of admissibility captures natural geometric phenomena of the phase space and it is a sufficient condition for a subgroup to be reproducing. It is expressed in terms of absolutely convergent integrals of Wigner distributions, translated by the affine action of the subgroup. We show that dim H ≤ d^2 + 2d, whereas if H ⊂ Sp(d,R), then dim H ≤ d^2 + 1. Both bounds are shown to be optimal.
2010
283
7
982
993
Metaplectic representation; reproducing formula; symplectic group; wavelets; Wigner distribution; semidirect product; Lie group; Lie algebra
E. Cordero; F. De Mari F; K. Nowak; A. Tabacco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/25315
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact