The classical Jordan-Neumann paper is the first of a large literature on the subject on the characterization of the inner product space (Hilbert space) among the linear normed space X (Banach space). For each \theta ϵ R/2πZ, we define an operator R_{\theta} on space X + X. the characterization introduced in this paper has the following statement : the Banach space X is an Hilbert space if and only if R_theta turn out to be an isometry of X + X for some \theta . We remark that when \theta = π/4 we obtain the Jordan-Neumann classical result.

A characterization of Hilbert spaces

DELBOSCO, Domenico
2005-01-01

Abstract

The classical Jordan-Neumann paper is the first of a large literature on the subject on the characterization of the inner product space (Hilbert space) among the linear normed space X (Banach space). For each \theta ϵ R/2πZ, we define an operator R_{\theta} on space X + X. the characterization introduced in this paper has the following statement : the Banach space X is an Hilbert space if and only if R_theta turn out to be an isometry of X + X for some \theta . We remark that when \theta = π/4 we obtain the Jordan-Neumann classical result.
2005
5
315
319
D. Delbosco
File in questo prodotto:
File Dimensione Formato  
Domenico Delbosco - ID-165858.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 129.14 kB
Formato Adobe PDF
129.14 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/27557
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact