Pattern Management Systems and Inductive Databases, are proposed as a new generation of general purpose databases with the aim to manage data mining patterns and work as knowledge bases in support to the deployment of the KDD process. One of the main problems to be solved is the integration between data and patterns and pattern maintenance when data update. Unfortunately, the heterogeneity of the patterns that represent the extracted knowledge and of the different conceptual tools used to find the patterns make difficult this integration in a unique framework. In this paper, we explore the feasibility of using XML as the unifying framework for inductive databases, and present a model, named XDM (XML for Data Mining). We will show the basic features of the model, such as the storage in the same database of both data and patterns. To store patterns, we consider determinant for their interpretation the storage of the pattern derivation process which is described by the concept of statement, based on data mining operators. Some of the statements are automatically generated by the system while maintaining consistence between source and derived data. Furthermore, we show how the use of XML namespaces allows the effective coexistence of different data mining operators and provides extensibility to new operators. Finally, we show that with the use of XML-Schema we are able to define the schema, the state and the integrity constraints of an inductive database.

An XML-Based Database for Knowledge Discovery

MEO, Rosa;
2006

Abstract

Pattern Management Systems and Inductive Databases, are proposed as a new generation of general purpose databases with the aim to manage data mining patterns and work as knowledge bases in support to the deployment of the KDD process. One of the main problems to be solved is the integration between data and patterns and pattern maintenance when data update. Unfortunately, the heterogeneity of the patterns that represent the extracted knowledge and of the different conceptual tools used to find the patterns make difficult this integration in a unique framework. In this paper, we explore the feasibility of using XML as the unifying framework for inductive databases, and present a model, named XDM (XML for Data Mining). We will show the basic features of the model, such as the storage in the same database of both data and patterns. To store patterns, we consider determinant for their interpretation the storage of the pattern derivation process which is described by the concept of statement, based on data mining operators. Some of the statements are automatically generated by the system while maintaining consistence between source and derived data. Furthermore, we show how the use of XML namespaces allows the effective coexistence of different data mining operators and provides extensibility to new operators. Finally, we show that with the use of XML-Schema we are able to define the schema, the state and the integrity constraints of an inductive database.
Second International Workshop on Pattern Representation and Management
Munich, Germany
31-3-2006
CURRENT TRENDS IN DATABASE TECHNOLOGY
Springer
4254
814
828
http://omen.cs.uni-magdeburg.de/itikmd/index.php?id=255
http://www.springerlink.com/content/g861hv720410vh25/
Meo, Rosa; Psaila, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/29066
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 14
social impact