Diphenyleneiodonium (DPI) and the structurally related compound diphenyliodonium (DIP) are widely used as inhibitors of flavoenzymes, particularly NADPH oxidase. Here we report further evidence that DPI and DIP are not specific flavin binders. A 3-h incubation of N11 glial cells with DPI significantly inhibited in a dose-dependent way both the pentose phosphate pathway and the tricarboxylic acid cycle. In parallel, we observed a dose-dependent increase of reactive oxygen species generation and lipoperoxidation and increased leakage of lactate dehydrogenase activity in the extracellular medium. The glutathione/glutathione disulfide ratio decreased, whereas the efflux of glutathione out of the cells increased. This suggests that DPI causes an augmented oxidative stress and exerts a cytotoxic effect in N11 cells. Indeed, the cells were protected from these events when loaded with glutathione. Similar results were observed using DIP instead of DPI and also in other cell types. We suggest that the DPI-elicited inhibition of the pentose phosphate pathway and tricarboxylic acid cycle may be mediated by the blockade of several NAD(P)-dependent enzymes, such as glucose 6-phosphate dehydrogenase, glyceraldehyde 3-phosphate dehydrogenase, and lactate dehydrogenase. In light of these results, we think that some effects of DPI or DIP in in vitro and in vivo experimental models should be interpreted with caution.

Diphenyleneiodonium inhibits the cell redox metabolism and induces oxidative stress

RIGANTI, Chiara;GAZZANO, Elena;POLIMENI, Manuela;COSTAMAGNA, Costanzo;BOSIA, Amalia;GHIGO, Dario Antonio
2004-01-01

Abstract

Diphenyleneiodonium (DPI) and the structurally related compound diphenyliodonium (DIP) are widely used as inhibitors of flavoenzymes, particularly NADPH oxidase. Here we report further evidence that DPI and DIP are not specific flavin binders. A 3-h incubation of N11 glial cells with DPI significantly inhibited in a dose-dependent way both the pentose phosphate pathway and the tricarboxylic acid cycle. In parallel, we observed a dose-dependent increase of reactive oxygen species generation and lipoperoxidation and increased leakage of lactate dehydrogenase activity in the extracellular medium. The glutathione/glutathione disulfide ratio decreased, whereas the efflux of glutathione out of the cells increased. This suggests that DPI causes an augmented oxidative stress and exerts a cytotoxic effect in N11 cells. Indeed, the cells were protected from these events when loaded with glutathione. Similar results were observed using DIP instead of DPI and also in other cell types. We suggest that the DPI-elicited inhibition of the pentose phosphate pathway and tricarboxylic acid cycle may be mediated by the blockade of several NAD(P)-dependent enzymes, such as glucose 6-phosphate dehydrogenase, glyceraldehyde 3-phosphate dehydrogenase, and lactate dehydrogenase. In light of these results, we think that some effects of DPI or DIP in in vitro and in vivo experimental models should be interpreted with caution.
2004
279
47726
47731
diphenyleneiodonium; diphenyliodonium; pentose phosphate pathway; glucose 6-phosphate dehydrogenase; 6-phosphogluconate dehydrogenase; reactive oxygen species; malonyldialdehyde; lactate dehydrogenase; glyceraldehyde 3-phosphate dehydrogenase; dehydroepiandrosterone
RIGANTI C.; GAZZANO E.; POLIMENI M.; COSTAMAGNA C.; BOSIA A.; GHIGO D.
File in questo prodotto:
File Dimensione Formato  
Riganti, JBC, 2004.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 283.8 kB
Formato Adobe PDF
283.8 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/36391
Citazioni
  • ???jsp.display-item.citation.pmc??? 71
  • Scopus 166
  • ???jsp.display-item.citation.isi??? 164
social impact