Dimethylsulphide (DMS) gas phase oxidation with OH radicals was investigated by long path FT-IR spectroscopy and by ion chromatography (IC) and HPLC-MS2 to quantify the reaction products and evaluate heterogeneous processes. The experiments were performed considering two different NOx, (NO2 + NO) levels. The initial concentration of NO2 was varied from 24 ppbV (NOx=1 ppmV) to 953 ppbV (NOx=10 ppmV). Photolysis of H2O2 was used as the OH-radical source. SO2, dimethylsulphoxide (DMSO), dimethylsulphone (DMSO2), methanesulphonic acid (MSA), methanesulphinic acid (MSIA) and methane sulphonyl peroxynitrate (MSPN) were identified as the main sulphur-containing products. The results indicate that higher NO, levels play a significant role in the chemistry of CH3S(O)(x) radical, influencing both the SO2/MSPN ratio and the amount of the sulphur species in the condensed phase, and that the NO2/NO ratio could influence the trends in the molar yields of the different products. For this reason the NOx content results a limiting parameter when on measure DMS in atmospheric environment.

OH- initiated Oxidation of DMS/DMSO: reaction products at high NOx levels

COLUCCIA, Salvatore
2004-01-01

Abstract

Dimethylsulphide (DMS) gas phase oxidation with OH radicals was investigated by long path FT-IR spectroscopy and by ion chromatography (IC) and HPLC-MS2 to quantify the reaction products and evaluate heterogeneous processes. The experiments were performed considering two different NOx, (NO2 + NO) levels. The initial concentration of NO2 was varied from 24 ppbV (NOx=1 ppmV) to 953 ppbV (NOx=10 ppmV). Photolysis of H2O2 was used as the OH-radical source. SO2, dimethylsulphoxide (DMSO), dimethylsulphone (DMSO2), methanesulphonic acid (MSA), methanesulphinic acid (MSIA) and methane sulphonyl peroxynitrate (MSPN) were identified as the main sulphur-containing products. The results indicate that higher NO, levels play a significant role in the chemistry of CH3S(O)(x) radical, influencing both the SO2/MSPN ratio and the amount of the sulphur species in the condensed phase, and that the NO2/NO ratio could influence the trends in the molar yields of the different products. For this reason the NOx content results a limiting parameter when on measure DMS in atmospheric environment.
2004
127
403
410
DMS; aerosol; nitrogen compounds; reaction pathways; climate change; photochemistry
V. LIBRANDO; G. TRINGALI; J. HJORTH; S. COLUCCIA
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/3676
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact