Given a regular function $H\colon\mathbb{R}^{3}\to\mathbb{R}$, we look for $H$-bubbles, i.e, regular surfaces in $\mathbb{R}^{3}$ parametrized on the sphere $\mathbb{S}^{2}$ with mean curvature $H$ at every point. Here we study the case $H(u)=H_{0}+\varepsilon H_{1}(u)=:H_{\varepsilon}(u)$, where $H_{0}$ is a nonzero constant, $\varepsilon$ is the smallness parameter, and $H_{1}$ is any $C^{2}$ function. We prove that if $\bar p\in\mathbb{R}^{3}$ is a "good" stationary point for the Melnikov-type function $\Gamma(p)=-\int_{|q-p|<|H_{0}|^{-1}}H_{1}(q)~dq$ then for $|\varepsilon|$ small there exists an $H_{\varepsilon}$-bubble $\omega^{\varepsilon}$ that converges to a sphere of radius $|H_{0}|^{-1}$ centered at $\bar p$, as $\varepsilon\to 0$.

H-bubbles in a perturbative setting: the finite-dimensional reduction's method

CALDIROLI, Paolo;
2004-01-01

Abstract

Given a regular function $H\colon\mathbb{R}^{3}\to\mathbb{R}$, we look for $H$-bubbles, i.e, regular surfaces in $\mathbb{R}^{3}$ parametrized on the sphere $\mathbb{S}^{2}$ with mean curvature $H$ at every point. Here we study the case $H(u)=H_{0}+\varepsilon H_{1}(u)=:H_{\varepsilon}(u)$, where $H_{0}$ is a nonzero constant, $\varepsilon$ is the smallness parameter, and $H_{1}$ is any $C^{2}$ function. We prove that if $\bar p\in\mathbb{R}^{3}$ is a "good" stationary point for the Melnikov-type function $\Gamma(p)=-\int_{|q-p|<|H_{0}|^{-1}}H_{1}(q)~dq$ then for $|\varepsilon|$ small there exists an $H_{\varepsilon}$-bubble $\omega^{\varepsilon}$ that converges to a sphere of radius $|H_{0}|^{-1}$ centered at $\bar p$, as $\varepsilon\to 0$.
2004
122
457
484
http://projecteuclid.org/euclid.dmj/1082665285
Caldiroli P.; Musina R.
File in questo prodotto:
File Dimensione Formato  
Duke2004.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 271.29 kB
Formato Adobe PDF
271.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/3734
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 25
social impact