A ruthenium complex trans- [Ru(L)(NCS)(2)], L = 4,4'''- di-tert- butyl- 4', 4''- bis( carboxylic acid)- 2,2': 6', 2 '': 6 '', 2'''-quaterpyridine (N886), was synthesized and characterized by spectroscopic and electrochemical methods. The absorption spectrum of the N886 complex shows metal-to-ligand charge-transfer transitions in the entire visible region and quasi-reversible oxidation and reduction potentials at E-1/2 = + 0.38 and - 1.92 V vs ferrocene, respectively. The electronic spectra of the N886 complex were calculated by density functional theory (DFT) - time-dependent DFT, which qualitatively reproduces the experimental absorption spectra for both the protonated and deprotonated species. From the analysis of the computed optical transitions of N886, we assign its absorption bands as mixed Ru/SCN-to-quaterpyridine charge-transfer transitions, which extend from the near-IR to the UV regions. The panchromatic response of the N886 complex renders it as a suitable sensitizer for solar energy conversion applications based on titanium dioxide mesoporous electrodes. The preliminary results using the N886 complex as a sensitizer in a dye-sensitized solar cell, with an electrolyte containing 0.60 M butylmethylimidazolium iodide, 0.03 M I-2, and 0.50 M tert-butylpyridine in a mixture of acetonitrile and valeronitrile ( volume ratio 1: 1), show 40% incident photon-to-current efficiencies, yielding under standard AM 1.5 sunlight a short-circuit photocurrent density of 11.8 +/- 0.2 mA/cm(2), an open-circuit voltage of 680 +/- 30 mV, and a fill factor of 0.73 +/- 0.03, corresponding to an overall conversion efficiency of 5.85%.

Synthesis, characterization, and DFT-TDDFT computational study of a ruthenium complex containing a functionalized tetradentate ligand

BAROLO, CLAUDIA;VISCARDI, Guido;QUAGLIOTTO, Pierluigi;
2006-01-01

Abstract

A ruthenium complex trans- [Ru(L)(NCS)(2)], L = 4,4'''- di-tert- butyl- 4', 4''- bis( carboxylic acid)- 2,2': 6', 2 '': 6 '', 2'''-quaterpyridine (N886), was synthesized and characterized by spectroscopic and electrochemical methods. The absorption spectrum of the N886 complex shows metal-to-ligand charge-transfer transitions in the entire visible region and quasi-reversible oxidation and reduction potentials at E-1/2 = + 0.38 and - 1.92 V vs ferrocene, respectively. The electronic spectra of the N886 complex were calculated by density functional theory (DFT) - time-dependent DFT, which qualitatively reproduces the experimental absorption spectra for both the protonated and deprotonated species. From the analysis of the computed optical transitions of N886, we assign its absorption bands as mixed Ru/SCN-to-quaterpyridine charge-transfer transitions, which extend from the near-IR to the UV regions. The panchromatic response of the N886 complex renders it as a suitable sensitizer for solar energy conversion applications based on titanium dioxide mesoporous electrodes. The preliminary results using the N886 complex as a sensitizer in a dye-sensitized solar cell, with an electrolyte containing 0.60 M butylmethylimidazolium iodide, 0.03 M I-2, and 0.50 M tert-butylpyridine in a mixture of acetonitrile and valeronitrile ( volume ratio 1: 1), show 40% incident photon-to-current efficiencies, yielding under standard AM 1.5 sunlight a short-circuit photocurrent density of 11.8 +/- 0.2 mA/cm(2), an open-circuit voltage of 680 +/- 30 mV, and a fill factor of 0.73 +/- 0.03, corresponding to an overall conversion efficiency of 5.85%.
2006
45
4642
4653
SENSITIZED SOLAR CELLS; MOLECULAR ORBITAL METHODS; GAUSSIAN TYPE BASIS; NANOCRYSTALLINE TIO2; ABSORPTION SPECTRUM; PHOTOELECTROCHEMICAL CHARACTERIZATION; ELECTRONIC SPECTRA; CHARGE TRANSFER; EXCITED STATES; WATER SOLUTION
C. BAROLO; M.K. NAZEERUDDIN; S. FANTACCI; D. DI CENSO; P. COMTE; P. LISKA; G. VISCARDI; P. QUAGLIOTTO; F. DE ANGELIS; S. ITO; M GRÄTZEL
File in questo prodotto:
File Dimensione Formato  
ic051970wsi20060317_085435.pdf

Accesso riservato

Tipo di file: MATERIALE NON BIBLIOGRAFICO
Dimensione 420.11 kB
Formato Adobe PDF
420.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
ic051970w.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 342.75 kB
Formato Adobe PDF
342.75 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/37804
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 164
  • ???jsp.display-item.citation.isi??? 164
social impact