It is proved the existence of Aubry-Mather sets and infinitely many subharmonic solutions to an equation of the form $u''+a u^{+}-b u^{-} + \phi(u) = p(t)$, where $u^{+}= \max\{u,0\}, \; u^{-}=\max\{-u,0\}$, $\phi: {\bf R} \to {\bf R}$ is continuous, $p:[0,2\pi] \to {\bf R}$ is continuous and $2\pi$-periodic. We deal with the situation when $a\neq b$ are two positive constants satisfying $1/\sqrt{a}+1/\sqrt{b}=2/n \, (n \in {\bf N})$.

Quasi-periodic solutions of a forced asymmetric oscillator at resonance

CAPIETTO, Anna;
2004-01-01

Abstract

It is proved the existence of Aubry-Mather sets and infinitely many subharmonic solutions to an equation of the form $u''+a u^{+}-b u^{-} + \phi(u) = p(t)$, where $u^{+}= \max\{u,0\}, \; u^{-}=\max\{-u,0\}$, $\phi: {\bf R} \to {\bf R}$ is continuous, $p:[0,2\pi] \to {\bf R}$ is continuous and $2\pi$-periodic. We deal with the situation when $a\neq b$ are two positive constants satisfying $1/\sqrt{a}+1/\sqrt{b}=2/n \, (n \in {\bf N})$.
2004
56
105
117
A. Capietto; B. Liu
File in questo prodotto:
File Dimensione Formato  
CapiettoLiu04.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 603.41 kB
Formato Adobe PDF
603.41 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/3830
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact