It is proved the existence of Aubry-Mather sets and infinitely many subharmonic solutions to an equation of the form $u''+a u^{+}-b u^{-} + \phi(u) = p(t)$, where $u^{+}= \max\{u,0\}, \; u^{-}=\max\{-u,0\}$, $\phi: {\bf R} \to {\bf R}$ is continuous, $p:[0,2\pi] \to {\bf R}$ is continuous and $2\pi$-periodic. We deal with the situation when $a\neq b$ are two positive constants satisfying $1/\sqrt{a}+1/\sqrt{b}=2/n \, (n \in {\bf N})$.
Quasi-periodic solutions of a forced asymmetric oscillator at resonance
CAPIETTO, Anna;
2004-01-01
Abstract
It is proved the existence of Aubry-Mather sets and infinitely many subharmonic solutions to an equation of the form $u''+a u^{+}-b u^{-} + \phi(u) = p(t)$, where $u^{+}= \max\{u,0\}, \; u^{-}=\max\{-u,0\}$, $\phi: {\bf R} \to {\bf R}$ is continuous, $p:[0,2\pi] \to {\bf R}$ is continuous and $2\pi$-periodic. We deal with the situation when $a\neq b$ are two positive constants satisfying $1/\sqrt{a}+1/\sqrt{b}=2/n \, (n \in {\bf N})$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CapiettoLiu04.pdf
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
603.41 kB
Formato
Adobe PDF
|
603.41 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.