Hereditary hemochromatosis usually results from C282Y homozygosity in the HFE gene on chromosome 6p. Recently, a new type of hemochromatosis (HFE3) has been characterized in 2 unrelated Italian families with a disorder linked to 7q. Patients with HFE3 have transferrin receptor 2 (TFR2) inactivated by a homozygous nonsense mutation (Y250X). Here the identification of 2 new TFR2 mutations is reported. In a large inbred family from Campania, a frameshift mutation (84-88 insC) in exon 2 that causes a premature stop codon (E60X) is identified. In a single patient with nonfamilial hemochromatosis, a T-->A transversion (T515A), which causes a Methionine-->Lysine substitution at position 172 of the protein (M172K), has been characterized. TFR2 gene gives origin to 2 alternatively spliced transcripts-the alpha-transcript, which may encode a transmembrane protein, and the beta-transcript, a shorter, possibly intracellular variant. Based on their positions, the effects of the identified mutations on the 2 TFR2 forms are expected to differ. Y250X inactivates both transcripts, whereas E60X inactivates only the alpha-form. M172K has a complex effect: it causes a missense in the alpha-form, but it may also prevent the beta-form production because it affects its putative initiation codon. Analysis of the clinical phenotype of 13 HFE3 homozygotes characterized at the molecular level has shown a variable severity, from nonexpressing patients to severe clinical complications. The identification of new mutations of TFR2 confirms that this gene is associated with iron overload and offers a tool for molecular diagnosis in patients without HFE mutations.

New mutations inactivating transferrin receptor 2 in hemochromatosis type 3.

ROETTO, Antonella;PIGA, Antonio Giulio;DE GOBBI, Marco;
2001-01-01

Abstract

Hereditary hemochromatosis usually results from C282Y homozygosity in the HFE gene on chromosome 6p. Recently, a new type of hemochromatosis (HFE3) has been characterized in 2 unrelated Italian families with a disorder linked to 7q. Patients with HFE3 have transferrin receptor 2 (TFR2) inactivated by a homozygous nonsense mutation (Y250X). Here the identification of 2 new TFR2 mutations is reported. In a large inbred family from Campania, a frameshift mutation (84-88 insC) in exon 2 that causes a premature stop codon (E60X) is identified. In a single patient with nonfamilial hemochromatosis, a T-->A transversion (T515A), which causes a Methionine-->Lysine substitution at position 172 of the protein (M172K), has been characterized. TFR2 gene gives origin to 2 alternatively spliced transcripts-the alpha-transcript, which may encode a transmembrane protein, and the beta-transcript, a shorter, possibly intracellular variant. Based on their positions, the effects of the identified mutations on the 2 TFR2 forms are expected to differ. Y250X inactivates both transcripts, whereas E60X inactivates only the alpha-form. M172K has a complex effect: it causes a missense in the alpha-form, but it may also prevent the beta-form production because it affects its putative initiation codon. Analysis of the clinical phenotype of 13 HFE3 homozygotes characterized at the molecular level has shown a variable severity, from nonexpressing patients to severe clinical complications. The identification of new mutations of TFR2 confirms that this gene is associated with iron overload and offers a tool for molecular diagnosis in patients without HFE mutations.
2001
97
2555
2560
Adolescent, Adult, Child, Female, Hemochromatosis; etiology/genetics/metabolism, Humans, Iron; metabolism, Male, Middle Aged, Mutation, Pedigree, Receptors; Transferrin; genetics/metabolism, Transferrin; metabolism
ROETTO A.; TOTARO A.; PIPERNO A.; PIGA A.; LONGO F.; GAROZZO G.; CALI A.; DE GOBBI M.; GASPARINI P.; CAMASCHELLA C.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/41378
Citazioni
  • ???jsp.display-item.citation.pmc??? 36
  • Scopus 229
  • ???jsp.display-item.citation.isi??? 184
social impact