We consider the restriction of classical principles like Excluded Middle, Markov’s Principle, König’s Lemma to arithmetical formulas of degree 2. For any such principle, we find simple mathematical statements which are intuitionistically equivalent to it, provided we restrict universal quantifications over maps to computable maps.

Some intuitionistic equivalents of classical principles for degree 2 formulas

BERARDI, Stefano
2006-01-01

Abstract

We consider the restriction of classical principles like Excluded Middle, Markov’s Principle, König’s Lemma to arithmetical formulas of degree 2. For any such principle, we find simple mathematical statements which are intuitionistically equivalent to it, provided we restrict universal quantifications over maps to computable maps.
2006
139(1-3)
185
200
S. BERARDI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/43201
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact