In this paper we study the local solvability in Gevrey classes for degenerate parabolic operators of order $\geq 2$. We assume that the lower order term vanishes at a suitably smaller rate with respect to the principal part; we then analyze its influence on the behaviour of the operator, proving local solvability in Gevrey spaces $G^s$ for small $s$, and local nonsolvability in $G^s$ for large $s$.

Gevrey Local Solvability for DegenerateParabolic Operators of Higher Order

OLIARO, Alessandro;
2007-01-01

Abstract

In this paper we study the local solvability in Gevrey classes for degenerate parabolic operators of order $\geq 2$. We assume that the lower order term vanishes at a suitably smaller rate with respect to the principal part; we then analyze its influence on the behaviour of the operator, proving local solvability in Gevrey spaces $G^s$ for small $s$, and local nonsolvability in $G^s$ for large $s$.
2007
Modern trends in pseudo-differential operators; Operator Theory: Advances and Applicationw
Birkhäuser
172
135
151
Degenerate parabolic operators; Gevrey classes; local solvability and non local solvability.
A. Oliaro; P. Popivanov
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/44244
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 2
social impact