In this paper we propose the use of the framework of Monte Carlo stochastic algorithms to analyze ensemble learning, specifically, bagging. In particular, this framework allows one to explain baggingrsquos behavior and also why increasing the margin improves performances. Experimental results support the theoretical analysis.

Explaining Bagging with Monte Carlo Theory

ESPOSITO, Roberto;
2003-01-01

Abstract

In this paper we propose the use of the framework of Monte Carlo stochastic algorithms to analyze ensemble learning, specifically, bagging. In particular, this framework allows one to explain baggingrsquos behavior and also why increasing the margin improves performances. Experimental results support the theoretical analysis.
2003
Inglese
contributo
AI*IA 2003
Pisa
23-26 Settembre 2003
Nazionale
Sì, ma tipo non specificato
2829
189
200
04-CONTRIBUTO IN ATTI DI CONVEGNO::04B-Conference paper in rivista
info:eu-repo/semantics/conferenceObject
2
none
Roberto Esposito; Lorenza Saitta
273
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/47606
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact