Proper thermal treatments allowed to modify the number of surface Ca2+ able to coordinate water molecules on the surface of hydroxyapatite (HA) nanoparticles surrounded by an amorphous layer. Despite the consequent significant difference in the first hydration level between untreated and treated HA, the amount of adsorbed BSA, used as a model protein, remained essentially unchanged and the native structure of adsorbed protein was retained (as indicated by mid-IR ATR). Near-IR spectroscopy evidenced that adsorbed proteins should be in direct contact with surface Ca2+ through a displacement of H2O molecules by charged acidic residues. In agreement with a previous study that evidenced the heterogeneity of surface Ca2+ ions in terms of Lewis acidity, it was then proposed that the adsorption of BSA on such nano-HA should be ruled by some feature of the local structure of surface Ca2+ sites, prevailing on the total number of cationic sites exposed and the related features of the first hydration layer.
Protein adsorption on nanohydroxyapatites: spectroscopic investigations at molecular level
BERTINETTI, Luca;CESCHINO, RAFFAELLA;MARTRA, Gianmario
2009-01-01
Abstract
Proper thermal treatments allowed to modify the number of surface Ca2+ able to coordinate water molecules on the surface of hydroxyapatite (HA) nanoparticles surrounded by an amorphous layer. Despite the consequent significant difference in the first hydration level between untreated and treated HA, the amount of adsorbed BSA, used as a model protein, remained essentially unchanged and the native structure of adsorbed protein was retained (as indicated by mid-IR ATR). Near-IR spectroscopy evidenced that adsorbed proteins should be in direct contact with surface Ca2+ through a displacement of H2O molecules by charged acidic residues. In agreement with a previous study that evidenced the heterogeneity of surface Ca2+ ions in terms of Lewis acidity, it was then proposed that the adsorption of BSA on such nano-HA should be ruled by some feature of the local structure of surface Ca2+ sites, prevailing on the total number of cationic sites exposed and the related features of the first hydration layer.File | Dimensione | Formato | |
---|---|---|---|
Key_Engineer_Mat_396_398_2009_77.pdf
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
298.36 kB
Formato
Adobe PDF
|
298.36 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.