In this paper, a cubature formula over polygons is proposed and analysed. It is based on an eight-node quadrilateral spline finite element [C.-J. Li, R.-H. Wang, A new 8-node quadrilateral spline finite element, J. Comp. Appl. Math. 195 (2006) 54-65] and is exact for quadratic polynomials on arbitrary convex quadrangulations and for cubic polynomials on rectangular partitions. The convergence of sequences of the above cubatures is proved for continuous integrand functions and error bounds are derived. Some numerical examples are given, by comparisons with other known cubatures.

Numerical integration over polygons by an 8-nodequadrilateral spline finite element

LAMBERTI, Paola;DAGNINO, Catterina
2009-01-01

Abstract

In this paper, a cubature formula over polygons is proposed and analysed. It is based on an eight-node quadrilateral spline finite element [C.-J. Li, R.-H. Wang, A new 8-node quadrilateral spline finite element, J. Comp. Appl. Math. 195 (2006) 54-65] and is exact for quadratic polynomials on arbitrary convex quadrangulations and for cubic polynomials on rectangular partitions. The convergence of sequences of the above cubatures is proved for continuous integrand functions and error bounds are derived. Some numerical examples are given, by comparisons with other known cubatures.
2009
233
279
292
Numerical integration; Spline finite element method; Bivariate splines; Triangulated quadrangulation
C-J. Li; P. Lamberti; C. Dagnino
File in questo prodotto:
File Dimensione Formato  
dagnino_2.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 2.78 MB
Formato Adobe PDF
2.78 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
L8-cubature(JCAM-final-revised).pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 854.78 kB
Formato Adobe PDF
854.78 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/58942
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact