In this paper, a cubature formula over polygons is proposed and analysed. It is based on an eight-node quadrilateral spline finite element [C.-J. Li, R.-H. Wang, A new 8-node quadrilateral spline finite element, J. Comp. Appl. Math. 195 (2006) 54-65] and is exact for quadratic polynomials on arbitrary convex quadrangulations and for cubic polynomials on rectangular partitions. The convergence of sequences of the above cubatures is proved for continuous integrand functions and error bounds are derived. Some numerical examples are given, by comparisons with other known cubatures.
Numerical integration over polygons by an 8-nodequadrilateral spline finite element
LAMBERTI, Paola;DAGNINO, Catterina
2009-01-01
Abstract
In this paper, a cubature formula over polygons is proposed and analysed. It is based on an eight-node quadrilateral spline finite element [C.-J. Li, R.-H. Wang, A new 8-node quadrilateral spline finite element, J. Comp. Appl. Math. 195 (2006) 54-65] and is exact for quadratic polynomials on arbitrary convex quadrangulations and for cubic polynomials on rectangular partitions. The convergence of sequences of the above cubatures is proved for continuous integrand functions and error bounds are derived. Some numerical examples are given, by comparisons with other known cubatures.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
dagnino_2.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
2.78 MB
Formato
Adobe PDF
|
2.78 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
L8-cubature(JCAM-final-revised).pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
854.78 kB
Formato
Adobe PDF
|
854.78 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.