The photocatalytic degradation of acetonitrile was carried out in liquid-solid regime in a batch reactor by using two types of commercial TiO2 powders (Merck and Degussa P25) as photocatalysts. The concentration of acetonitrile and non-purgeable organic carbon (NPOC) were monitored. The initial rate of acetonitrile conversion was found higher on TiO2 Merck than on TiO2 P25. FT-IR spectroscopy was used to investigate the molecular features of the adsorption and photo-oxidation of acetonitrile on the two TiO2 powders in a fully surface hydrated form. Acetonitrile was found adsorbed on Ti4+ surface ions and hydroxyl groups for both types of TiO2. This interaction appeared fully reversible in the case of the Merck photocatalyst, whereas acetonitrile was more strongly stabilized on Ti4+ ions of TiO2 P25. Furthermore, the adsorption of CD3CN...Ti4+ on this type of photocatalyst resulted in the formation of acetamide-like species, because of the presence of nucleophilic surface O2- and hydroxyl groups. The formation of these species, strongly bound to the TiO2 surface and recalcitrant to the photo-oxidation, could result in the poisoning of a part of the photocatalytic sites of TiO2 P25, accounting for its lower initial acetonitrile conversion rate.
Titolo: | Adsorption and photocatalytic degradation of acetonitrile: FT-IR investigation |
Autori Riconosciuti: | |
Autori: | P. Davit; G. Martra; S. Coluccia; V. Augugliaro; E.G. Lopez; V. Loddo; G. Marci; L. Palmisano; M. Schiavello |
Data di pubblicazione: | 2003 |
Abstract: | The photocatalytic degradation of acetonitrile was carried out in liquid-solid regime in a batch reactor by using two types of commercial TiO2 powders (Merck and Degussa P25) as photocatalysts. The concentration of acetonitrile and non-purgeable organic carbon (NPOC) were monitored. The initial rate of acetonitrile conversion was found higher on TiO2 Merck than on TiO2 P25. FT-IR spectroscopy was used to investigate the molecular features of the adsorption and photo-oxidation of acetonitrile on the two TiO2 powders in a fully surface hydrated form. Acetonitrile was found adsorbed on Ti4+ surface ions and hydroxyl groups for both types of TiO2. This interaction appeared fully reversible in the case of the Merck photocatalyst, whereas acetonitrile was more strongly stabilized on Ti4+ ions of TiO2 P25. Furthermore, the adsorption of CD3CN...Ti4+ on this type of photocatalyst resulted in the formation of acetamide-like species, because of the presence of nucleophilic surface O2- and hydroxyl groups. The formation of these species, strongly bound to the TiO2 surface and recalcitrant to the photo-oxidation, could result in the poisoning of a part of the photocatalytic sites of TiO2 P25, accounting for its lower initial acetonitrile conversion rate. |
Volume: | 204 |
Pagina iniziale: | 693 |
Pagina finale: | 701 |
Digital Object Identifier (DOI): | 10.1016/S1381-1169(03)00354-6 |
Parole Chiave: | TiO2; acetonitrile; adsorption; photocatalysis; FF-IR investigation |
Rivista: | JOURNAL OF MOLECULAR CATALYSIS. A: CHEMICAL |
Appare nelle tipologie: | 03A-Articolo su Rivista |