It is proved the existence of infinitely many solutions to a superquadratic Dirac-type boundary value problem of the form $\tau z = \nabla_z F(t,z)$, $y(0) = y(\pi) = 0$ ($z=(x,y)\in \mathbb{R}^2 $). Solutions are distinguished by using the concept of rotation number. The proof is performed by a global bifurcation technique.

Infinitely many solutions to superquadratic planar Dirac-type systems

BOSCAGGIN, Alberto;CAPIETTO, Anna
2009-01-01

Abstract

It is proved the existence of infinitely many solutions to a superquadratic Dirac-type boundary value problem of the form $\tau z = \nabla_z F(t,z)$, $y(0) = y(\pi) = 0$ ($z=(x,y)\in \mathbb{R}^2 $). Solutions are distinguished by using the concept of rotation number. The proof is performed by a global bifurcation technique.
2009
-
72
81
A. Boscaggin; A. Capietto
File in questo prodotto:
File Dimensione Formato  
CapiettoB09.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 160.19 kB
Formato Adobe PDF
160.19 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/65312
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact