It is proved the existence of infinitely many solutions to a superquadratic Dirac-type boundary value problem of the form $\tau z = \nabla_z F(t,z)$, $y(0) = y(\pi) = 0$ ($z=(x,y)\in \mathbb{R}^2 $). Solutions are distinguished by using the concept of rotation number. The proof is performed by a global bifurcation technique.
Infinitely many solutions to superquadratic planar Dirac-type systems
BOSCAGGIN, Alberto;CAPIETTO, Anna
2009-01-01
Abstract
It is proved the existence of infinitely many solutions to a superquadratic Dirac-type boundary value problem of the form $\tau z = \nabla_z F(t,z)$, $y(0) = y(\pi) = 0$ ($z=(x,y)\in \mathbb{R}^2 $). Solutions are distinguished by using the concept of rotation number. The proof is performed by a global bifurcation technique.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CapiettoB09.pdf
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
160.19 kB
Formato
Adobe PDF
|
160.19 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.