Peroxisome proliferator-activated receptor (PPAR)gamma stimulation provides protection in several models of neurological disorders, but the mechanisms underlying these effects remain to be fully elucidated. Here we have studied whether two PPARgamma agonists, pioglitazone and rosiglitazone, prevent loss of differentiated SH-SY5Y cells transiently exposed to glucose deprivation (GD). Nanomolar drug concentrations prevented GD-induced cell loss in a concentration- and time-dependent manner. These effects were abolished by malonate, a reversible mitochondrial Complex II inhibitor, while significantly potentiated by pyruvate, thus suggesting that they are related to mitochondrial function. During cell pretreatment, PPARgamma agonists promoted biogenesis of functional mitochondria, as indicated by the up-regulation of PPARgamma coactivator (PGC)-1alpha, NRF1, TFAM, cytochrome c oxidase subunit (CO) I and CO IV, and the increased level of mtDNA, while did not significantly change mitochondrial membrane potential. In addition, the analysis of the concentration-response and time-course curves for the protective effects and the up-regulation of mitochondrial biogenesis markers suggests that mitochondrial biogenesis and cell loss prevention are related effects. In conclusion our data indicate that a prolonged PPARgamma stimulation, by repeated administration of nanomolar pioglitazone or rosiglitazone concentrations, decreases GD-induced loss of differentiated SH-SY5Y cells. In addition, they suggest that mitochondrial biogenesis may contribute to these effects.

PPARgamma stimulation promotes mitochondrial biogenesis and prevents glucose deprivation-induced neuronal cell loss

MIGLIO, Gianluca;ROSA, ARIANNA CAROLINA;RATTAZZI, LORENZA;COLLINO, Massimo;FANTOZZI, Roberto
2009-01-01

Abstract

Peroxisome proliferator-activated receptor (PPAR)gamma stimulation provides protection in several models of neurological disorders, but the mechanisms underlying these effects remain to be fully elucidated. Here we have studied whether two PPARgamma agonists, pioglitazone and rosiglitazone, prevent loss of differentiated SH-SY5Y cells transiently exposed to glucose deprivation (GD). Nanomolar drug concentrations prevented GD-induced cell loss in a concentration- and time-dependent manner. These effects were abolished by malonate, a reversible mitochondrial Complex II inhibitor, while significantly potentiated by pyruvate, thus suggesting that they are related to mitochondrial function. During cell pretreatment, PPARgamma agonists promoted biogenesis of functional mitochondria, as indicated by the up-regulation of PPARgamma coactivator (PGC)-1alpha, NRF1, TFAM, cytochrome c oxidase subunit (CO) I and CO IV, and the increased level of mtDNA, while did not significantly change mitochondrial membrane potential. In addition, the analysis of the concentration-response and time-course curves for the protective effects and the up-regulation of mitochondrial biogenesis markers suggests that mitochondrial biogenesis and cell loss prevention are related effects. In conclusion our data indicate that a prolonged PPARgamma stimulation, by repeated administration of nanomolar pioglitazone or rosiglitazone concentrations, decreases GD-induced loss of differentiated SH-SY5Y cells. In addition, they suggest that mitochondrial biogenesis may contribute to these effects.
2009
55
496
504
biogenesi mitocondriale; neuroprotezione; agonisti PPARgamma
Gianluca Miglio; Arianna Carolina Rosa; Lorenza Rattazzi; Massimo Collino; Grazia Lombardi; Roberto Fantozzi
File in questo prodotto:
File Dimensione Formato  
Miglio_2009.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 476.5 kB
Formato Adobe PDF
476.5 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/66583
Citazioni
  • ???jsp.display-item.citation.pmc??? 65
  • Scopus 115
  • ???jsp.display-item.citation.isi??? 109
social impact