Thanks to an important research effort during the last few years, inductive queries on local patterns (e.g., set patterns) and their associated complete solvers have been proved extremely useful to support knowledge discovery. The more we use such queries on real-life data, e.g., biological data, the more we are convinced that inductive queries should return fault-tolerant patterns. This is obviously the case when considering formal concept discovery from noisy datasets. Therefore, we study various extensions of this kind of bi-set towards fault-tolerance. We compare three declarative specifications of fault-tolerant bi-sets by means of a constraint-based mining approach. Our framework enables a better understanding of the needed trade-off between extraction feasibility, completeness, relevance, and ease of interpretation of these fault-tolerant patterns. An original empirical evaluation on both synthetic and real-life medical data is given. It enables a comparison of the various proposals and it motivates further directions of research.

Constraint-based mining of fault-tolerant patterns from Boolean data

PENSA, Ruggero Gaetano;
2006-01-01

Abstract

Thanks to an important research effort during the last few years, inductive queries on local patterns (e.g., set patterns) and their associated complete solvers have been proved extremely useful to support knowledge discovery. The more we use such queries on real-life data, e.g., biological data, the more we are convinced that inductive queries should return fault-tolerant patterns. This is obviously the case when considering formal concept discovery from noisy datasets. Therefore, we study various extensions of this kind of bi-set towards fault-tolerance. We compare three declarative specifications of fault-tolerant bi-sets by means of a constraint-based mining approach. Our framework enables a better understanding of the needed trade-off between extraction feasibility, completeness, relevance, and ease of interpretation of these fault-tolerant patterns. An original empirical evaluation on both synthetic and real-life medical data is given. It enables a comparison of the various proposals and it motivates further directions of research.
2006
Knowledge Discovery in Inductive Databases
Springer
3933
55
71
fault-tolerant pattern mining
J. Besson; R. G. Pensa; C. Robardet; J-F. Boulicaut
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/67125
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 8
social impact