One of the most exciting scientific challenges in functional genomics concerns the discovery of biologically relevant patterns from gene expression data. For instance, it is extremely useful to provide putative synexpression groups or transcription modules to molecular biologists. We propose a methodology that has been proved useful in real cases. It is described as a prototypical KDD scenario which starts from raw expression data selection until useful patterns are delivered. Our conceptual contribution is (a) to emphasize how to take the most from recent progress in constraint-based mining of set patterns, and (b) to propose a generic approach for gene expression data enrichment. The methodology has been validated on real data sets.
A methodology for biologically relevant pattern discovery from gene expression data
PENSA, Ruggero Gaetano;
2004-01-01
Abstract
One of the most exciting scientific challenges in functional genomics concerns the discovery of biologically relevant patterns from gene expression data. For instance, it is extremely useful to provide putative synexpression groups or transcription modules to molecular biologists. We propose a methodology that has been proved useful in real cases. It is described as a prototypical KDD scenario which starts from raw expression data selection until useful patterns are delivered. Our conceptual contribution is (a) to emphasize how to take the most from recent progress in constraint-based mining of set patterns, and (b) to propose a generic approach for gene expression data enrichment. The methodology has been validated on real data sets.File | Dimensione | Formato | |
---|---|---|---|
ds04.pdf
Accesso riservato
Descrizione: pdf editoriale
Tipo di file:
PDF EDITORIALE
Dimensione
186.25 kB
Formato
Adobe PDF
|
186.25 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.