Using immortalized hypothalamic GT1-7 neurons, which express the CB1 cannabinoid receptor (CB1R) and three Ca2+ channel types (T, R and L), we found that the CB1R agonist WIN 55,212-2 inhibited the voltage-gated Ca2+ currents by about 35%. The inhibition by WIN 55,212-2 (10 microM) was reversible and prevented by nifedipine (3 microM), suggesting a selective action on L-type Ca2+ channels (LTCCs). WIN 55,212-2 action exhibited all the features of voltage-independent Ca2+ channel modulation: (1) no changes of the activation kinetics, (2) equal depressive action at all potentials and (3) no facilitation following strong prepulses. At variance with WIN 55,212-2, the CB1R inverse agonist AM-251 (10 microM) caused 20% increase of Ca2+ currents. The inhibition of LTCCs by WIN 55,212-2 was prevented by overnight PTX-incubation and by intracellular perfusion with GDP-beta-S. The latter caused also a 20% Ca2+ current up-regulation. WIN 55,212-2 action was also prevented by application of the PKA-blocker H89 or by loading the neurons with 8-CPT-cAMP. Our results suggest that LTCCs in GT1-7 neurons are partially inhibited at rest due to a constitutive CB1R activity removed by AM-251 and GDP-beta-S. Activation of CB1R via PTX-sensitive G proteins and cAMP/PKA pathway selectively depresses LTCCs that critically control the synchronized spontaneous firing and pulsatile release of gonadotropin-releasing hormone in GT1-7 neurons.
L-type channel inhibition by CB1 cannabinoid receptors is mediated by PTX-sensitive G proteins and cAMP/PKA in GT1-7 hypothalamic neurons
MARCANTONI, Andrea;COMUNANZA, Valentina;CARABELLI, Valentina;CARBONE, Emilio
2009-01-01
Abstract
Using immortalized hypothalamic GT1-7 neurons, which express the CB1 cannabinoid receptor (CB1R) and three Ca2+ channel types (T, R and L), we found that the CB1R agonist WIN 55,212-2 inhibited the voltage-gated Ca2+ currents by about 35%. The inhibition by WIN 55,212-2 (10 microM) was reversible and prevented by nifedipine (3 microM), suggesting a selective action on L-type Ca2+ channels (LTCCs). WIN 55,212-2 action exhibited all the features of voltage-independent Ca2+ channel modulation: (1) no changes of the activation kinetics, (2) equal depressive action at all potentials and (3) no facilitation following strong prepulses. At variance with WIN 55,212-2, the CB1R inverse agonist AM-251 (10 microM) caused 20% increase of Ca2+ currents. The inhibition of LTCCs by WIN 55,212-2 was prevented by overnight PTX-incubation and by intracellular perfusion with GDP-beta-S. The latter caused also a 20% Ca2+ current up-regulation. WIN 55,212-2 action was also prevented by application of the PKA-blocker H89 or by loading the neurons with 8-CPT-cAMP. Our results suggest that LTCCs in GT1-7 neurons are partially inhibited at rest due to a constitutive CB1R activity removed by AM-251 and GDP-beta-S. Activation of CB1R via PTX-sensitive G proteins and cAMP/PKA pathway selectively depresses LTCCs that critically control the synchronized spontaneous firing and pulsatile release of gonadotropin-releasing hormone in GT1-7 neurons.File | Dimensione | Formato | |
---|---|---|---|
Hoddah et al Cell Calcium 2009.pdf
Accesso aperto
Tipo di file:
MATERIALE NON BIBLIOGRAFICO
Dimensione
1.25 MB
Formato
Adobe PDF
|
1.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.