Distraction during driving task is one of the most serious problems affecting traffic safety, being one of the main causes of accidents. Therefore, a method to diagnose and evaluate Distraction appears to be of paramount importance to study and implement efficient counter-measures. This research aims at illustrating our approach in diagnosis of Distraction status, comparing some of the widely used data-mining techniques; in particular, Fuzzy Logic (with Adaptive-Network-based Fuzzy Inference System) and Artificial Neural Networks. The results are compared to select which method gives the best performances.
Evaluation of Distraction in a Driver-Vehicle-Environment Framework: an application of different Data-mining techniques
BOTTA, Marco
2009-01-01
Abstract
Distraction during driving task is one of the most serious problems affecting traffic safety, being one of the main causes of accidents. Therefore, a method to diagnose and evaluate Distraction appears to be of paramount importance to study and implement efficient counter-measures. This research aims at illustrating our approach in diagnosis of Distraction status, comparing some of the widely used data-mining techniques; in particular, Fuzzy Logic (with Adaptive-Network-based Fuzzy Inference System) and Artificial Neural Networks. The results are compared to select which method gives the best performances.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.