We consider a class of semilinear stochastic evolution equations driven by an additive cylindrical stable noise. We investigate structural properties of the solutions like Markov, irreducibility, stochastic continuity, Feller and strong Feller properties, and study integrability of trajectories. The obtained results are applied to semilinear stochastic heat equations with Dirichlet boundary conditions and bounded and Lipschitz nonlinearities.

Structural properties of semilinear SPDEs driven by cylindrical stable processes

PRIOLA, Enrico;
2011-01-01

Abstract

We consider a class of semilinear stochastic evolution equations driven by an additive cylindrical stable noise. We investigate structural properties of the solutions like Markov, irreducibility, stochastic continuity, Feller and strong Feller properties, and study integrability of trajectories. The obtained results are applied to semilinear stochastic heat equations with Dirichlet boundary conditions and bounded and Lipschitz nonlinearities.
2011
149
97
137
http://arxiv.org/pdf/0810.5063v2
http://www.springerlink.com/content/100451/
Stochastic PDEs with jumps; Strong Feller property; Regularity of trajectories
E. Priola; J. Zabczyk
File in questo prodotto:
File Dimensione Formato  
PriolaZabPTRF.pdf

Accesso riservato

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 392.01 kB
Formato Adobe PDF
392.01 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/72713
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 86
  • ???jsp.display-item.citation.isi??? 73
social impact