In the context of (2+1)–dimensional gravity, we use holonomies of constant connections which generate a q–deformed representation of the fundamental group to derive signed area phases which relate the quantum matrices assigned to homotopic loops. We use these features to determine a quantum Goldman bracket (commutator) for intersecting loops on surfaces, and discuss the resulting quantum geometry.

A quantum Goldman bracket for loops on surfaces

NELSON, Jeanette Ethel;
2009-01-01

Abstract

In the context of (2+1)–dimensional gravity, we use holonomies of constant connections which generate a q–deformed representation of the fundamental group to derive signed area phases which relate the quantum matrices assigned to homotopic loops. We use these features to determine a quantum Goldman bracket (commutator) for intersecting loops on surfaces, and discuss the resulting quantum geometry.
2009
24
2839
2856
http://arxiv.org/abs/0903.4809
http://www.worldscinet.com/ijmpa/24/2415/S0217751X09046199.html
Goldman bracket; quantum; surfaces
J.E.Nelson; R.F.Picken
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/75777
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact