Acquisition of independence from anchorage to the extracellular matrix is a critical event for onset and progression of solid cancers. To identify and characterize new genes conferring anchorage independence, we transduced MCF10A human normal breast cells with a retroviral cDNA expression library and selected them by growth in suspension. Microarray analysis targeted on library-derived transcripts revealed robust and reproducible enrichment, after selection, of cDNAs encoding the scaffolding adaptor Gab2. Gab2 was confirmed to strongly promote anchorage-independent growth when overexpressed. Interestingly, downregulation by RNA interference of endogenous Gab2 in neoplastic cells did not affect their adherent growth, but abrogated their growth in soft agar. Gab2-driven anchorage independence was found to specifically involve activation of the Src-Stat3 signaling axis. A transcriptional 'signature' of 205 genes was obtained from GAB2-transduced, anchorage-independent MCF10A cells, and found to contain two main functional modules, controlling proliferation and cell adhesion/migration/invasion, respectively. Extensive validation on breast cancer data sets showed that the GAB2 signature provides a robust prognostic classifier for breast cancer metastatic relapse, largely independent from existing clinical and genomic indicators and from estrogen receptor status. This work highlights a pivotal role for GAB2 and its transcriptional targets in anchorage-independent growth and breast cancer metastatic progression.

The GAB2 signaling scaffold promotes anchorage independence and drives a transcriptional response associated with metastatic progression of breast cancer.

ISELLA, CLAUDIO;MEDICO, Enzo
2009

Abstract

Acquisition of independence from anchorage to the extracellular matrix is a critical event for onset and progression of solid cancers. To identify and characterize new genes conferring anchorage independence, we transduced MCF10A human normal breast cells with a retroviral cDNA expression library and selected them by growth in suspension. Microarray analysis targeted on library-derived transcripts revealed robust and reproducible enrichment, after selection, of cDNAs encoding the scaffolding adaptor Gab2. Gab2 was confirmed to strongly promote anchorage-independent growth when overexpressed. Interestingly, downregulation by RNA interference of endogenous Gab2 in neoplastic cells did not affect their adherent growth, but abrogated their growth in soft agar. Gab2-driven anchorage independence was found to specifically involve activation of the Src-Stat3 signaling axis. A transcriptional 'signature' of 205 genes was obtained from GAB2-transduced, anchorage-independent MCF10A cells, and found to contain two main functional modules, controlling proliferation and cell adhesion/migration/invasion, respectively. Extensive validation on breast cancer data sets showed that the GAB2 signature provides a robust prognostic classifier for breast cancer metastatic relapse, largely independent from existing clinical and genomic indicators and from estrogen receptor status. This work highlights a pivotal role for GAB2 and its transcriptional targets in anchorage-independent growth and breast cancer metastatic progression.
28
50
4444
4455
http://dx.doi.org/10.1038/onc.2009.296
Adaptor Proteins; Signal Transducing; Breast Neoplasms; Cell Line; Tumor; Cell Proliferation; Disease Progression; Female; Humans; Neoplasm Metastasis; Oligonucleotide Array Sequence Analysis; Proto-Oncogene Proteins c-akt; STAT3 Transcription Factor; Signal Transduction; Transcription; Genetic; src-Family Kinases
A. Mira;C. Isella;T. Renzulli;D. Cantarella;M. L. Martelli;E. Medico
File in questo prodotto:
File Dimensione Formato  
2009_Mira et al_GAB2_4aperto.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/77339
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact